Spaces:
Sleeping
Sleeping
File size: 11,324 Bytes
84df34e 8af33a6 9c9ed59 46b45ba 84df34e 44e3c5c 84df34e bf1f293 8af33a6 bf1f293 8af33a6 8055050 393b034 8af33a6 84df34e 8af33a6 84df34e 8af33a6 84df34e 8af33a6 84df34e 8af33a6 84df34e 8af33a6 18542cb 8af33a6 84df34e 8af33a6 ec2a28d 8af33a6 ec2a28d 8af33a6 84df34e 9c9ed59 8af33a6 9c9ed59 8af33a6 96ebd64 8af33a6 96ebd64 8af33a6 96ebd64 8af33a6 96ebd64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import os
import subprocess
import random
from huggingface_hub import InferenceClient, cached_download, hf_hub_url
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
import json
# --- Global Variables for App State ---
app_state = {"components": []}
terminal_history = ""
# --- Component Library ---
components_registry = {
"Button": {
"properties": {"label": "Click Me", "onclick": ""},
"description": "A clickable button",
"code_snippet": 'gr.Button(value="{label}", variant="primary")',
},
"Text Input": {
"properties": {"value": "", "placeholder": "Enter text"},
"description": "A field for entering text",
"code_snippet": 'gr.Textbox(label="{placeholder}")',
},
"Image": {
"properties": {"src": "#", "alt": "Image"},
"description": "Displays an image",
"code_snippet": 'gr.Image(label="{alt}")',
},
"Dropdown": {
"properties": {"choices": ["Option 1", "Option 2"], "value": ""},
"description": "A dropdown menu for selecting options",
"code_snippet": 'gr.Dropdown(choices={choices}, label="Dropdown")',
},
# Add more components here...
}
# --- NLP Model (Example using Hugging Face) ---
nlp_model_name = "google/flan-t5-small"
# Check if the model exists in the cache
try:
cached_download(hf_hub_url(nlp_model_name, revision="main"))
nlp_model = InferenceClient(nlp_model_name)
except:
nlp_model = None
# --- Function to get NLP model response ---
def get_nlp_response(input_text):
if nlp_model:
response = nlp_model.text_generation(input_text)
return response.generated_text
else:
return "NLP model not available."
# --- Component Class ---
class Component:
def __init__(self, type, properties=None, id=None):
self.id = id or random.randint(1000, 9999)
self.type = type
self.properties = properties or components_registry[type]["properties"].copy()
def to_dict(self):
return {
"id": self.id,
"type": self.type,
"properties": self.properties,
}
def render(self):
# Properly format choices for Dropdown
if self.type == "Dropdown":
self.properties["choices"] = (
str(self.properties["choices"])
.replace("[", "")
.replace("]", "")
.replace("'", "")
)
return components_registry[self.type]["code_snippet"].format(
**self.properties
)
# --- Function to update the app canvas (for preview) ---
def update_app_canvas():
components_html = "".join(
[
f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>"
for component in app_state["components"]
]
)
return components_html
# --- Function to handle component addition ---
def add_component(component_type):
if component_type in components_registry:
new_component = Component(component_type)
app_state["components"].append(new_component.to_dict())
return (
update_app_canvas(),
f"System: Added component: {component_type}\n",
)
else:
return None, f"Error: Invalid component type: {component_type}\n"
# --- Function to handle terminal input ---
def run_terminal_command(command, history):
global terminal_history
output = ""
try:
# Basic command parsing (expand with NLP)
if command.startswith("add "):
component_type = command.split("add ", 1)[1].strip()
_, output = add_component(component_type)
elif command.startswith("set "):
_, output = set_component_property(command)
elif command.startswith("search "):
search_query = command.split("search ", 1)[1].strip()
output = i_s(search_query)
else:
# Attempt to execute command as Python code
try:
result = subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT, text=True
)
output = result
except Exception as e:
output = f"Error executing Python code: {str(e)}"
except Exception as e:
output = f"Error: {str(e)}"
finally:
terminal_history += f"User: {command}\n"
terminal_history += f"{output}\n"
return terminal_history
def set_component_property(command):
try:
# Improved 'set' command parsing
set_parts = command.split(" ", 2)[1:]
if len(set_parts) != 2:
raise ValueError("Invalid 'set' command format.")
component_id = int(set_parts[0]) # Use component ID
property_name, property_value = set_parts[1].split("=", 1)
# Find component by ID
component_found = False
for component in app_state["components"]:
if component["id"] == component_id:
if property_name in component["properties"]:
component["properties"][
property_name.strip()
] = property_value.strip()
component_found = True
return (
update_app_canvas(),
f"System: Property '{property_name}' set to '{property_value}' for component {component_id}\n",
)
else:
return (
None,
f"Error: Property '{property_name}' not found in component {component_id}\n",
)
if not component_found:
return (
None,
f"Error: Component with ID {component_id} not found.\n",
)
except Exception as e:
return None, f"Error: Invalid 'set' command format or error setting property: {str(e)}\n"
# --- Function to handle chat interaction ---
def run_chat(message, history):
global terminal_history
if message.startswith("!"):
command = message[1:]
terminal_history = run_terminal_command(command, history)
return history, terminal_history
else:
# ... (Your regular chat response generation)
return history, terminal_history
# --- Code Generation ---
def generate_python_code(app_name):
code = f"""
import gradio as gr
# Define your Gradio components here
with gr.Blocks() as {app_name}:
"""
for component in app_state["components"]:
code += " " + Component(**component).render() + "\n"
code += f"""
{app_name}.launch()
"""
return code
# --- Save/Load App State ---
def save_app_state(filename="app_state.json"):
with open(filename, "w") as f:
json.dump(app_state, f)
def load_app_state(filename="app_state.json"):
global app_state
try:
with open(filename, "r") as f:
app_state = json.load(f)
except FileNotFoundError:
print("App state file not found. Starting with a blank slate.")
# --- Hugging Face Deployment ---
def deploy_to_huggingface(app_name):
# Generate Python code
code = generate_python_code(app_name)
# Create requirements.txt
with open("requirements.txt", "w") as f:
f.write("gradio==3.32.0\n")
# Create the app.py file
with open("app.py", "w") as f:
f.write(code)
# Execute the deployment command
try:
subprocess.run(
[
"huggingface-cli",
"repo",
"create",
"--type",
"space",
"--space_sdk",
"gradio",
app_name,
],
check=True,
)
subprocess.run(
["git", "init"], cwd=f"./{app_name}", check=True
)
subprocess.run(
["git", "add", "."], cwd=f"./{app_name}", check=True
)
subprocess.run(
['git', 'commit', '-m', '"Initial commit"'], cwd=f"./{app_name}", check=True
)
subprocess.run(
["git", "push", "https://huggingface.co/spaces/" + app_name, "main"], cwd=f"./{app_name}", check=True
)
return (
f"Successfully deployed to Hugging Face Spaces: https://huggingface.co/spaces/{app_name}"
)
except Exception as e:
return f"Error deploying to Hugging Face Spaces: {e}"
# --- Gradio Interface ---
with gr.Blocks() as iface:
with gr.Row():
# --- Chat Interface ---
chat_history = gr.Chatbot(label="Chat with Agent")
chat_input = gr.Textbox(label="Your Message")
chat_button = gr.Button("Send")
chat_button.click(
run_chat,
inputs=[chat_input, chat_history],
outputs=[chat_history, terminal_output],
)
with gr.Row():
# --- App Builder Section ---
app_canvas = gr.HTML(
"<div>App Canvas Preview:</div>", label="App Canvas"
)
with gr.Column():
component_list = gr.Dropdown(
choices=list(components_registry.keys()), label="Components"
)
add_button = gr.Button("Add Component")
add_button.click(
add_component,
inputs=component_list,
outputs=[app_canvas, terminal_output],
)
with gr.Row():
# --- Terminal ---
terminal_output = gr.Textbox(
lines=8, label="Terminal", value=terminal_history
)
terminal_input = gr.Textbox(label="Enter Command")
terminal_button = gr.Button("Run")
terminal_button.click(
run_terminal_command,
inputs=[terminal_input, terminal_output],
outputs=terminal_output,
)
with gr.Row():
# --- Code Generation ---
code_output = gr.Code(
generate_python_code("app_name"),
language="python",
label="Generated Code",
)
app_name_input = gr.Textbox(label="App Name")
generate_code_button = gr.Button("Generate Code")
generate_code_button.click(
generate_python_code,
inputs=[app_name_input],
outputs=code_output,
)
with gr.Row():
# --- Save/Load Buttons ---
save_button = gr.Button("Save App State")
load_button = gr.Button("Load App State")
save_button.click(save_app_state)
load_button.click(load_app_state)
with gr.Row():
# --- Deploy Button ---
deploy_button = gr.Button("Deploy to Hugging Face")
deploy_output = gr.Textbox(label="Deployment Output")
deploy_button.click(
deploy_to_huggingface,
inputs=[app_name_input],
outputs=[deploy_output],
)
iface.launch() |