Spaces:
Sleeping
Sleeping
File size: 11,205 Bytes
675c9d3 b0453e4 8c3fbf8 b0453e4 8c3fbf8 b0453e4 8c3fbf8 b0453e4 8c3fbf8 b0453e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
import streamlit as st
from huggingface_hub import InferenceClient
import gradio as gr
import random
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import subprocess
# --- Agent Definitions ---
class AIAgent:
def __init__(self, name, description, skills, model_name="mistralai/Mixtral-8x7B-Instruct-v0.1"):
self.name = name
self.description = description
self.skills = skills
self.model_name = model_name
self.client = InferenceClient(self.model_name)
def create_agent_prompt(self):
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def generate_response(self, prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
formatted_prompt = self.format_prompt(prompt, history)
stream = self.client.text_generation(formatted_prompt,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(1, 1111111111111111),
stream=True,
details=True,
return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
def format_prompt(self, message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def autonomous_build(self, chat_history, workspace_projects):
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
# --- Agent Definitions ---
agents = {
"WEB_DEV": AIAgent("WEB_DEV", "Web development expert", ["HTML", "CSS", "JavaScript", "Flask", "React"]),
"AI_SYSTEM_PROMPT": AIAgent("AI_SYSTEM_PROMPT", "AI system prompt expert", ["Prompt Engineering", "LLM Interaction", "Fine-tuning"]),
"PYTHON_CODE_DEV": AIAgent("PYTHON_CODE_DEV", "Python code development expert", ["Python", "Data Structures", "Algorithms", "Libraries"]),
"CODE_REVIEW_ASSISTANT": AIAgent("CODE_REVIEW_ASSISTANT", "Code review assistant", ["Code Quality", "Best Practices", "Security"]),
"CONTENT_WRITER_EDITOR": AIAgent("CONTENT_WRITER_EDITOR", "Content writer and editor", ["Writing", "Editing", "SEO"]),
"QUESTION_GENERATOR": AIAgent("QUESTION_GENERATOR", "Question generator", ["Question Generation", "Knowledge Testing"]),
"HUGGINGFACE_FILE_DEV": AIAgent("HUGGINGFACE_FILE_DEV", "Hugging Face file development expert", ["Hugging Face Hub", "Model Training", "Dataset Creation"]),
}
# --- Streamlit UI ---
st.title("DevToolKit: AI-Powered Development Environment")
# --- Project Management ---
st.header("Project Management")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
if project_name not in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name] = {'files': []}
st.success(f"Created project: {project_name}")
else:
st.warning(f"Project {project_name} already exists")
# --- Code Addition ---
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# --- Terminal Interface ---
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# --- Chat Interface ---
st.subheader("Chat with DevToolKit for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"DevToolKit: {chat_response}")
# --- Display Chat History ---
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f"User: {user_input}")
st.write(f"DevToolKit: {response}")
# --- Display Terminal History ---
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
# --- Display Projects and Files ---
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}")
# --- Chat with AI Agents ---
st.subheader("Chat with AI Agents")
selected_agent_name = st.selectbox("Select an AI agent", list(agents.keys()))
selected_agent = agents[selected_agent_name]
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
agent_chat_response = selected_agent.generate_response(agent_chat_input, st.session_state.chat_history)
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
st.write(f"{selected_agent.name}: {agent_chat_response}")
# --- Automate Build Process ---
st.subheader("Automate Build Process")
if st.button("Automate"):
summary, next_step = selected_agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)
# --- Display current state for debugging ---
st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state.current_state)
# --- Gradio Interface ---
additional_inputs = [
gr.Dropdown(label="Agents", choices=list(agents.keys()), value=list(agents.keys())[0], interactive=True),
gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1000*10, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
]
examples = [
["Create a simple web application using Flask", "WEB_DEV", None, None, None, None, ],
["Generate a Python script to perform a linear regression analysis", "PYTHON_CODE_DEV", None, None, None, None, ],
["Create a Dockerfile for a Node.js application", "AI_SYSTEM_PROMPT", None, None, None, None, ],
# Add more examples as needed
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="DevToolKit AI Assistant",
examples=examples,
concurrency_limit=20,
).launch(show_api=True)
# --- Helper Functions (Moved to separate file) ---
def generate(prompt, history, agent_name, sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
# ... (Implementation in utils.py)
def chat_interface(chat_input):
# ... (Implementation in utils.py)
def chat_interface_with_agent(chat_input, agent_name):
# ... (Implementation in utils.py)
def terminal_interface(command, project_name):
# ... (Implementation in utils.py)
def add_code_to_workspace(project_name, code, file_name):
# ... (Implementation in utils.py)
2. requirements.txt (Dependencies)
streamlit
huggingface_hub
gradio
transformers
subprocess
3. utils.py (Helper Functions)
import os
import subprocess
import streamlit as st
def generate(prompt, history, agent_name, sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
seed = random.randint(1, 1111111111111111)
agent = agents[agent_name]
system_prompt = agent.create_agent_prompt() if sys_prompt is None else sys_prompt
generate_kwargs = dict(
temperature=float(temperature),
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
formatted_prompt = agent.format_prompt(f"{system_prompt}, {prompt}", history)
stream = agent.client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
def chat_interface(chat_input):
response = generate(chat_input, st.session_state.chat_history)
return response
def chat_interface_with_agent(chat_input, agent_name):
agent_prompt = agents[agent_name].create_agent_prompt()
response = generate(chat_input, st.session_state.chat_history, agent_name=agent_name, sys_prompt=agent_prompt)
return response
def terminal_interface(command, project_name):
try:
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_name)
return result.stdout if result.returncode == 0 else result.stderr
except Exception as e:
return str(e)
def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(os.getcwd(), project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
file_path = os.path.join(project_path, file_name)
with open(file_path, 'w') as file:
file.write(code)
if project_name not in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name] = {'files': []}
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Added {file_name} to {project_name}" |