File size: 11,205 Bytes
675c9d3
b0453e4
 
 
 
 
8c3fbf8
b0453e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3fbf8
b0453e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3fbf8
b0453e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3fbf8
b0453e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import streamlit as st
from huggingface_hub import InferenceClient
import gradio as gr
import random
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import subprocess

# --- Agent Definitions ---
class AIAgent:
    def __init__(self, name, description, skills, model_name="mistralai/Mixtral-8x7B-Instruct-v0.1"):
        self.name = name
        self.description = description
        self.skills = skills
        self.model_name = model_name
        self.client = InferenceClient(self.model_name)

    def create_agent_prompt(self):
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
        return agent_prompt

    def generate_response(self, prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
        formatted_prompt = self.format_prompt(prompt, history)
        stream = self.client.text_generation(formatted_prompt, 
                                            temperature=temperature,
                                            max_new_tokens=max_new_tokens,
                                            top_p=top_p,
                                            repetition_penalty=repetition_penalty,
                                            do_sample=True,
                                            seed=random.randint(1, 1111111111111111),
                                            stream=True, 
                                            details=True, 
                                            return_full_text=False)
        output = ""
        for response in stream:
            output += response.token.text
            yield output
        return output

    def format_prompt(self, message, history):
        prompt = "<s>"
        for user_prompt, bot_response in history:
            prompt += f"[INST] {user_prompt} [/INST]"
            prompt += f" {bot_response}</s> "
        prompt += f"[INST] {message} [/INST]"
        return prompt

    def autonomous_build(self, chat_history, workspace_projects):
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
        next_step = "Based on the current state, the next logical step is to implement the main application logic."
        return summary, next_step

# --- Agent Definitions ---
agents = {
    "WEB_DEV": AIAgent("WEB_DEV", "Web development expert", ["HTML", "CSS", "JavaScript", "Flask", "React"]),
    "AI_SYSTEM_PROMPT": AIAgent("AI_SYSTEM_PROMPT", "AI system prompt expert", ["Prompt Engineering", "LLM Interaction", "Fine-tuning"]),
    "PYTHON_CODE_DEV": AIAgent("PYTHON_CODE_DEV", "Python code development expert", ["Python", "Data Structures", "Algorithms", "Libraries"]),
    "CODE_REVIEW_ASSISTANT": AIAgent("CODE_REVIEW_ASSISTANT", "Code review assistant", ["Code Quality", "Best Practices", "Security"]),
    "CONTENT_WRITER_EDITOR": AIAgent("CONTENT_WRITER_EDITOR", "Content writer and editor", ["Writing", "Editing", "SEO"]),
    "QUESTION_GENERATOR": AIAgent("QUESTION_GENERATOR", "Question generator", ["Question Generation", "Knowledge Testing"]),
    "HUGGINGFACE_FILE_DEV": AIAgent("HUGGINGFACE_FILE_DEV", "Hugging Face file development expert", ["Hugging Face Hub", "Model Training", "Dataset Creation"]),
}

# --- Streamlit UI ---
st.title("DevToolKit: AI-Powered Development Environment")

# --- Project Management ---
st.header("Project Management")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
    if project_name not in st.session_state.workspace_projects:
        st.session_state.workspace_projects[project_name] = {'files': []}
        st.success(f"Created project: {project_name}")
    else:
        st.warning(f"Project {project_name} already exists")

# --- Code Addition ---
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
if st.button("Add Code"):
    add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
    st.success(add_code_status)

# --- Terminal Interface ---
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
    terminal_output = terminal_interface(terminal_input, project_name)
    st.code(terminal_output, language="bash")

# --- Chat Interface ---
st.subheader("Chat with DevToolKit for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
    chat_response = chat_interface(chat_input)
    st.session_state.chat_history.append((chat_input, chat_response))
    st.write(f"DevToolKit: {chat_response}")

# --- Display Chat History ---
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
    st.write(f"User: {user_input}")
    st.write(f"DevToolKit: {response}")

# --- Display Terminal History ---
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
    st.write(f"Command: {command}")
    st.code(output, language="bash")

# --- Display Projects and Files ---
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
    st.write(f"Project: {project}")
    for file in details['files']:
        st.write(f"  - {file}")

# --- Chat with AI Agents ---
st.subheader("Chat with AI Agents")
selected_agent_name = st.selectbox("Select an AI agent", list(agents.keys()))
selected_agent = agents[selected_agent_name]
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
    agent_chat_response = selected_agent.generate_response(agent_chat_input, st.session_state.chat_history)
    st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
    st.write(f"{selected_agent.name}: {agent_chat_response}")

# --- Automate Build Process ---
st.subheader("Automate Build Process")
if st.button("Automate"):
    summary, next_step = selected_agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
    st.write("Autonomous Build Summary:")
    st.write(summary)
    st.write("Next Step:")
    st.write(next_step)

# --- Display current state for debugging ---
st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state.current_state)

# --- Gradio Interface ---
additional_inputs = [
    gr.Dropdown(label="Agents", choices=list(agents.keys()), value=list(agents.keys())[0], interactive=True),
    gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
    gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
    gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1000*10, step=64, interactive=True, info="The maximum numbers of new tokens"),
    gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
    gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
]

examples = [
    ["Create a simple web application using Flask", "WEB_DEV", None, None, None, None, ],
    ["Generate a Python script to perform a linear regression analysis", "PYTHON_CODE_DEV", None, None, None, None, ],
    ["Create a Dockerfile for a Node.js application", "AI_SYSTEM_PROMPT", None, None, None, None, ],
    # Add more examples as needed
]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="DevToolKit AI Assistant",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=True)

# --- Helper Functions (Moved to separate file) ---
def generate(prompt, history, agent_name, sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
    # ... (Implementation in utils.py)

def chat_interface(chat_input):
    # ... (Implementation in utils.py)

def chat_interface_with_agent(chat_input, agent_name):
    # ... (Implementation in utils.py)

def terminal_interface(command, project_name):
    # ... (Implementation in utils.py)

def add_code_to_workspace(project_name, code, file_name):
    # ... (Implementation in utils.py)
2. requirements.txt (Dependencies)

streamlit
huggingface_hub
gradio
transformers
subprocess
3. utils.py (Helper Functions)

import os
import subprocess
import streamlit as st

def generate(prompt, history, agent_name, sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
    seed = random.randint(1, 1111111111111111)
    agent = agents[agent_name]
    system_prompt = agent.create_agent_prompt() if sys_prompt is None else sys_prompt

    generate_kwargs = dict(
        temperature=float(temperature),
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = agent.format_prompt(f"{system_prompt}, {prompt}", history)
    stream = agent.client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

def chat_interface(chat_input):
    response = generate(chat_input, st.session_state.chat_history)
    return response

def chat_interface_with_agent(chat_input, agent_name):
    agent_prompt = agents[agent_name].create_agent_prompt()
    response = generate(chat_input, st.session_state.chat_history, agent_name=agent_name, sys_prompt=agent_prompt)
    return response

def terminal_interface(command, project_name):
    try:
        result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_name)
        return result.stdout if result.returncode == 0 else result.stderr
    except Exception as e:
        return str(e)

def add_code_to_workspace(project_name, code, file_name):
    project_path = os.path.join(os.getcwd(), project_name)
    if not os.path.exists(project_path):
        os.makedirs(project_path)
    file_path = os.path.join(project_path, file_name)
    with open(file_path, 'w') as file:
        file.write(code)
    if project_name not in st.session_state.workspace_projects:
        st.session_state.workspace_projects[project_name] = {'files': []}
    st.session_state.workspace_projects[project_name]['files'].append(file_name)
    return f"Added {file_name} to {project_name}"