File size: 12,881 Bytes
fd59a9f
20ca81b
 
d331751
 
 
 
20ca81b
d331751
20ca81b
d331751
 
20ca81b
 
 
 
 
 
 
 
 
 
 
 
 
 
d331751
20ca81b
d331751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0843d32
d331751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ca81b
d331751
 
 
 
 
 
0843d32
 
 
 
 
 
 
 
 
d331751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ca81b
d331751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0843d32
20ca81b
d331751
 
 
 
 
 
 
 
0843d32
d331751
 
0843d32
d331751
0843d32
d331751
0843d32
d331751
0843d32
20ca81b
c7153b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0843d32
 
 
 
 
 
 
 
 
c7153b2
 
 
 
 
 
 
 
 
 
 
ee86491
c7153b2
 
 
0843d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b11ce
2296c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b11ce
2296c0c
 
 
 
 
 
a8b11ce
2296c0c
 
 
 
 
 
 
a8b11ce
 
 
 
 
2296c0c
c7153b2
 
 
 
 
 
2296c0c
4aec078
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import subprocess
import random
import json
from datetime import datetime

from huggingface_hub import InferenceClient, cached_download, hf_hub_url
import gradio as gr

from safe_search import safe_search
from i_search import google, i_search as i_s

from agent import (
    ACTION_PROMPT,
    ADD_PROMPT,
    COMPRESS_HISTORY_PROMPT,
    LOG_PROMPT,
    LOG_RESPONSE,
    MODIFY_PROMPT,
    PREFIX,
    SEARCH_QUERY,
    READ_PROMPT,
    TASK_PROMPT,
    UNDERSTAND_TEST_RESULTS_PROMPT,
)

from utils import parse_action, parse_file_content, read_python_module_structure

class App:
    def __init__(self):
        self.app_state = {"components": []}
        self.terminal_history = ""
        self.components_registry = {
            "Button": {
                "properties": {
                    "label": "Click Me",
                    "onclick": ""
                },
                "description": "A clickable button",
                "code_snippet": "gr.Button(value='{{label}}', variant='primary')"
            },
            "Text Input": {
                "properties": {
                    "value": "",
                    "placeholder": "Enter text"
                },
                "description": "A field for entering text",
                "code_snippet": "gr.Textbox(label='{{placeholder}}')"
            },
            "Image": {
                "properties": {
                    "src": "#",
                    "alt": "Image"
                },
                "description": "Displays an image",
                "code_snippet": "gr.Image(label='{{alt}}')"
            },
            "Dropdown": {
                "properties": {
                    "choices": ["Option 1", "Option 2"],
                    "value": ""
                },
                "description": "A dropdown menu for selecting options",
                "code_snippet": "gr.Dropdown(choices={{choices}}, label='Dropdown')"
            }
        }
        self.nlp_model_names = [
            "google/flan-t5-small",
            "Qwen/CodeQwen1.5-7B-Chat-GGUF",
            "bartowski/Codestral-22B-v0.1-GGUF",
            "bartowski/AutoCoder-GGUF"
        ]
        self.nlp_models = []
        self.initialize_nlp_models()

    def initialize_nlp_models(self):
        for nlp_model_name in self.nlp_model_names:
            try:
                cached_download(hf_hub_url(nlp_model_name, revision="main"))
                self.nlp_models.append(InferenceClient(nlp_model_name))
            except:
                self.nlp_models.append(None)

    def get_nlp_response(self, input_text, model_index):
        if self.nlp_models[model_index]:
            response = self.nlp_models[model_index].text_generation(input_text)
            return response.generated_text
        else:
            return "NLP model not available."

    def update_app_canvas(self):
        components_html = "".join([f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>" for component in self.app_state["components"]])
        return components_html

    def add_component(self, component_type, properties=None):
        try:
            new_component = {
                "type": component_type,
                "properties": properties or {}
            }
            self.app_state["components"].append(new_component)
        except Exception as e:
            print(f"Error adding component: {e}")

    def run_terminal_command(self, command, history):
        output = ""
        try:
            if command.startswith("add "):
                component_type = command.split("add ")[1]
                return self.add_component(component_type)
            elif command.startswith("search "):
                query = command.split("search ")[1]
                return google(query)
            elif command.startswith("i search "):
                query = command.split("i search ")[1]
                return i_s(query)
            elif command.startswith("safe search "):
                query = command.split("safesearch ")[1]
                return safe_search(query)
            elif command.startswith("read "):
                file_path = command.split("read ")[1]
                return parse_file_content(file_path)
            elif command == "task":
                return TASK_PROMPT
            elif command == "modify":
                return MODIFY_PROMPT
            elif command == "log":
                return LOG_PROMPT
            elif command.startswith("understand test results "):
                test_results = command.split("understand test results ")[1]
                return self.understand_test_results(test_results)
            elif command.startswith("compress history"):
                return self.compress_history(history)
            elif command == "help":
                return self.get_help_message()
            elif command == "exit":
                exit()
            else:
                output = subprocess.check_output(command, shell=True).decode("utf-8")
        except Exception as e:
            output = str(e)
        return output or "No output\n"

    def compress_history(self, history):
        compressed_history = ""
        lines = history.strip().split("\n")
        for line in lines:
            if not line.strip().startswith("#"):
                compressed_history += line + "\n"
        return compressed_history

    def understand_test_results(self, test_results):
        return UNDERSTAND_TEST_RESULTS_PROMPT

    def get_help_message(self):
        return """
        Available commands:
        - add [component_type]: Add a component to the app canvas
        - search [query]: Perform a Google search
        - i search [query]: Perform an intelligent search
        - safe search [query]: Perform a safe search
        - read [file_path]: Read and parse the content of a Python module
        - task: Prompt for a task to perform
        - modify: Prompt to modify a component property
        - log: Prompt to log a response
        - understand test results [test_results]: Understand test results
        - compress history: Compress the terminal history by removing comments
        - help: Show this help message
        - exit: Exit the program
        """

    def process_input(self, input_text):
        if input_text.strip().startswith("/"):
            command = input_text.strip().lstrip("/")
            output = self.run_terminal_command(command, self.terminal_history)
            self.terminal_history += f"{input_text}\n{output}\n"
            return output, ""
        else:
            model_index = random.randint(0, len(self.nlp_models)-1)
            response = self.get_nlp_response(input_text, model_index)
            component_id, action, property_name, property_value = parse_action(response)
            if component_id:
                component = next((comp for comp in self.app_state["components"] if comp["id"] == component_id), None)
                if component:
                    if action == "update":
                        component["properties"][property_name] = property_value
                        return self.update_app_canvas(), f"System: Updated property '{property_name}' of component with ID {component_id}\n"
                    elif action == "remove":
                        self.app_state["components"].remove(component)
                        return self.update_app_canvas(), f"System: Removed component with ID {component_id}\n"
                    else:
                        return "", f"Error: Invalid action: {action}\n"
                else:
                    return "", f"Error: Component with ID {component_id} not found\n"
            else:
                return "", f"Error: Failed to parse action from NLP response\n"

    def build_app(self):
        with gr.Blocks() as demo:
            for component in self.app_state["components"]:
                component_type = component["type"]
                properties = component["properties"]
                
                if component_type == "Button":
                    gr.Button(value=properties["label"], variant="primary")
                elif component_type == "Text Input":
                    gr.Textbox(label=properties["placeholder"])
                elif component_type == "Image":
                    gr.Image(label=properties["alt"])
                elif component_type == "Dropdown":
                    gr.Dropdown(choices=properties["choices"], label="Dropdown")

            with gr.Tab("Terminal"):
                gr.Markdown("## Terminal")
                terminal_input = gr.Textbox(label="Input")
                terminal_output = gr.Textbox(label="Output")
                run_terminal_command_button = gr.Button("Run Command")
                run_terminal_command_button.click(
                    self.run_terminal_command,
                    inputs=[terminal_input],
                    outputs=[terminal_output]
                )

            with gr.Tab("NLP Models"):
                gr.Markdown("## Available NLP Models")
                model_index = gr.Slider(label="Model Index", minimum=0, maximum=len(self.nlp_model_names)-1, step=1)
                input_text = gr.Textbox(label="Input Text")
                get_nlp_response_button = gr.Button("Get NLP Response")
                get_nlp_response_button.click(
                    self.get_nlp_response,
                    inputs=[input_text, model_index],
                    outputs="text"
                )

        return demo

    def run(self):
        self._print_welcome_message()
        
        while True:
            try:
                input_text = self._get_user_input()
                if input_text.lower() == 'exit':
                    break
                elif input_text.lower() == 'launch':
                    self.launch_app()
                    continue
                
                output, system_message = self.process_input(input_text)
                self._display_output(output, system_message)
            
            except EOFError:
                print("Error: Input reading interrupted. Please provide valid input.")
            except KeyboardInterrupt:
                print("\nApplication stopped by user.")
                break
            except Exception as e:
                print(f"An error occurred: {str(e)}")

    def _print_welcome_message(self):
        print("Welcome to the Python App Builder!")
        print("Type 'help' to see the available commands.")
        print("Type 'launch' to build and launch the Gradio app.")
        print("Type 'exit' to quit the application.")
        print("-" * 50)

    def _get_user_input(self):
        return input("Enter input: ").strip()

    def _display_output(self, output, system_message):
        if output:
            print(output)
        if system_message:
            print(system_message)

    def launch_app(self):
        demo = self.build_app()
        demo.launch()

def main():
    try:
        app = App()
        demo = app.build_app()
        demo.launch()
    except Exception as e:
        print(f"Error launching app: {e}")

if __name__ == "__main__":
    main()

    def run(self):
        self._print_welcome_message()
        
        while True:
            try:
                input_text = self._get_user_input()
                if input_text.lower() == 'exit':
                    break
                elif input_text.lower() == 'launch':
                    self.launch_app()
                    continue
                
                output, system_message = self.process_input(input_text)
                self._display_output(output, system_message)
            
            except EOFError:
                print("Error: Input reading interrupted. Please provide valid input.")
            except KeyboardInterrupt:
                print("\nApplication stopped by user.")
                break
            except Exception as e:
                print(f"An error occurred: {str(e)}")

    def _print_welcome_message(self):
        print("Welcome to the Python App Builder!")
        print("Type 'help' to see the available commands.")
        print("Type 'launch' to build and launch the Gradio app.")
        print("Type 'exit' to quit the application.")
        print("-" * 50)

    def _get_user_input(self):
        return input("Enter input: ").strip()

    def _display_output(self, output, system_message):
        if output:
            print(output)
        if system_message:
            print(system_message)

    def launch_app(self):
        demo = self.build_app()
        demo.launch()

def main():
    try:
        app = App()
        demo = app.build_app()
        demo.launch()
    except Exception as e:
        print(f"Error launching app: {e}")

if __name__ == "__main__":
    main()