Spaces:
Sleeping
Sleeping
File size: 8,198 Bytes
2fd03cf fd59a9f 2fd03cf fd59a9f ac54317 2fd03cf fd59a9f ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf ac54317 2fd03cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableSequence
from huggingface_hub import HuggingFaceHub, InferenceApi as InferenceClient
from langchain_community.llms import HuggingFaceEndpoint
from streamlit import StreamlitApp, write, text_input, text_area, button, session_state, write as st_write
import os
import time
# Load LLM
llm = HuggingFaceEndpoint(repo_id="tiiuae/falcon-7b-instruct", model_kwargs={"temperature": 0.1, "max_new_tokens": 500})
class Agent:
def __init__(self, name: str, agent_type: str, complexity: int):
self.name: str = name
self.agent_type: str = agent_type
self.complexity: int = complexity
self.tools: List[Tool] = []
def add_tool(self, tool: Tool):
self.tools.append(tool)
def __str__(self):
return f"{self.name} ({self.agent_type}) - Complexity: {self.complexity}"
class Tool:
def __init__(self, name: str, tool_type: str):
self.name: str = name
self.tool_type: str = tool_type
def __str__(self):
return f"{self.name} ({self.tool_type})"
class Pypelyne:
def __init__(self):
self.agents: List[Agent] = []
self.tools: List[Tool] = []
self.history: str = ""
self.task: str = ""
self.purpose: str = ""
self.directory: str = ""
self.task_queue: list = []
def add_agent(self, agent: Agent):
self.agents.append(agent)
def add_tool(self, tool: Tool):
self.tools.append(tool)
def generate_chat_app(self) -> str:
time.sleep(2)
return f"Chat app generated with {len(self.agents)} agents and {len(self.tools)} tools."
def run_gpt(
self,
prompt_template: PromptTemplate,
stop_tokens: List[str],
max_tokens: int,
**prompt_kwargs,
) -> str:
content = f"""{PREFIX}
{prompt_template.format(**prompt_kwargs)}"""
if VERBOSE:
print(LOG_PROMPT.format(content))
try:
stream = llm.predict(content)
resp = "".join(stream)
except Exception as e:
print(f"Error in run_gpt: {e}")
resp = f"Error: {e}"
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_history(self):
resp = self.run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
task=self.task,
history=self.history,
)
self.history = f"observation: {resp}\n"
def run_action(self, action_name: str, action_input: Union[str, List[str]], tools: List[Tool] = None) -> str:
if action_name == "COMPLETE":
return "Task completed."
if len(self.history.split("\n")) > MAX_HISTORY:
self.compress_history()
if action_name not in self.task_queue:
self.task_queue.append(action_name)
task_function = getattr(self, f"call_{action_name.lower()}")
result = task_function(action_input, tools)
self.task_queue.pop(0)
return result
def call_main(self, action_input: List[str]) -> str:
resp = self.run_gpt(
f"{ACTION_PROMPT}",
stop_tokens=["observation:", "task:"],
max_tokens=256,
task=self.task,
history=self.history,
actions=action_input,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
self.history += f"{line}\n"
action_name, action_input = parse_action(line)
self.run_action(action_name, action_input)
return "No valid action found."
def call_set_task(self, action_input: str) -> str:
self.task = action_input
return f"Task updated: {self.task}"
def call_modify(self, action_input: str, agent: Agent) -> str:
with open(action_input, "r") as file:
file_content = file.read()
resp = self.run_gpt(
f"{MODIFY_PROMPT}",
stop_tokens=["action:", "thought:", "observation:"],
max_tokens=2048,
task=self.task,
history=self.history,
file_path=action_input,
file_contents=file_content,
agent=agent,
)
new_contents = resp.strip()
with open(action_input, "w") as file:
file.write(new_contents)
self.history += f"observation: file successfully modified\n"
return f"File modified: {action_input}"
def call_read(self, action_input: str) -> str:
with open(action_input, "r") as file:
file_content = file.read()
self.history += f"observation: {file_content}\n"
return file_content
def call_add(self, action_input: str) -> str:
if not os.path.exists(self.directory):
os.makedirs(self.directory)
with open(os.path.join(self.directory, action_input), "w") as file:
file.write("")
self.history += f"observation: file created: {action_input}\n"
return f"File created: {action_input}"
def call_test(self, action_input: str) -> str:
result = subprocess.run(["python", os.path.join(self.directory, action_input)], capture_output=True, text=True)
error_message = result.stderr.strip()
self.history += f"observation: tests {('passed' if error_message == '' else 'failed')}\n"
return f"Tests {'passed' if error_message == '' else 'failed'}: {error_message}"
# Global Pypelyne Instance
pypelyne = Pypelyne()
# Helper Functions
def create_agent(name: str, agent_type: str, complexity: int) -> Agent:
agent = Agent(name, agent_type, complexity)
pypelyne.add_agent(agent)
return agent
def create_tool(name: str, tool_type: str) -> Tool:
tool = Tool(name, tool_type)
pypelyne.add_tool(tool)
return tool
# Streamlit App Code
def main():
st.title("🧠 Pypelyne: Your AI-Powered Coding Assistant")
# Settings
st.sidebar.title("⚙️ Settings")
directory = st.sidebar.text_input(
"Project Directory:", value=pypelyne.directory, help="Path to your coding project"
)
pypelyne.directory = directory
purpose = st.sidebar.text_area(
"Project Purpose:",
value=pypelyne.purpose,
help="Describe the purpose of your coding project.",
)
pypelyne.purpose = purpose
# Agent and Tool Management
st.sidebar.header("🤖 Agents")
agents = st.sidebar.column(2)
tools = st.sidebar.column(1)
for agent in pypelyne.agents:
agents.write(f"- {agent}")
if st.sidebar.button("Create New Agent"):
agent_name = st.sidebar.text_input("Agent Name:")
agent_type = st.sidebar.selectbox("Agent Type:", ["Task Executor", "Information Retriever", "Decision Maker", "Data Analyzer"])
agent_complexity = st.sidebar.slider("Complexity (1-5):", 1, 5, 3)
new_agent = create_agent(agent_name, agent_type, agent_complexity)
pypelyne.agents = pypelyne.agents + [new_agent]
st.sidebar.header("🛠️ Tools")
for tool in pypelyne.tools:
tools.write(f"- {tool}")
if st.sidebar.button("Create New Tool"):
tool_name = st.sidebar.text_input("Tool Name:")
tool_type = st.sidebar.selectbox("Tool Type:", ["Web Scraper", "Database Connector", "API Caller", "File Handler", "Text Processor"])
new_tool = create_tool(tool_name, tool_type)
pypelyne.tools = pypelyne.tools + [new_tool]
# Main Content Area
st.header("💻 Code Interaction")
task = st.text_area(
"🎯 Task:",
value=pypelyne.task,
help="Describe the coding task you want to perform.",
)
if task:
pypelyne.task = task
user_input = st.text_input("💬 Your Input:")
if st.button("Execute"):
if user_input:
response = pypelyne.run_action("main", [user_input])
st.write("Pypelyne Says: ", response)
if __name__ == "__main__":
main() |