Spaces:
Sleeping
Sleeping
File size: 9,582 Bytes
fae4179 b8b7a36 4781efb b8b7a36 4781efb b8b7a36 39a6462 b8b7a36 4781efb 4cbab65 4781efb 4cbab65 4781efb 4cbab65 4781efb 4cbab65 4781efb 4cbab65 b2eac4f 4781efb 4fd2fa4 4781efb 4fd2fa4 4781efb 4fd2fa4 4781efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import subprocess
import random
import json
from datetime import datetime
from huggingface_hub import InferenceClient, cached_download, hf_hub_url
import gradio as gr
from safe_search import safe_search
from i_search import google, i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
class App:
def __init__(self):
self.app_state = {"components": []}
self.terminal_history = ""
self.components_registry = {
"Button": {
"properties": {
"label": "Click Me",
"onclick": ""
},
"description": "A clickable button",
"code_snippet": "gr.Button(value='{{label}}', variant='primary')"
},
"Text Input": {
"properties": {
"value": "",
"placeholder": "Enter text"
},
"description": "A field for entering text",
"code_snippet": "gr.Textbox(label='{{placeholder}}')"
},
"Image": {
"properties": {
"src": "#",
"alt": "Image"
},
"description": "Displays an image",
"code_snippet": "gr.Image(label='{{alt}}')"
},
"Dropdown": {
"properties": {
"choices": ["Option 1", "Option 2"],
"value": ""
},
"description": "A dropdown menu for selecting options",
"code_snippet": "gr.Dropdown(choices={{choices}}, label='Dropdown')"
}
}
self.nlp_model_names = [
"google/flan-t5-small",
"Qwen/CodeQwen1.5-7B-Chat-GGUF",
"bartowski/Codestral-22B-v0.1-GGUF",
"bartowski/AutoCoder-GGUF"
]
self.nlp_models = []
self.initialize_nlp_models()
def initialize_nlp_models(self):
for nlp_model_name in self.nlp_model_names:
try:
cached_download(hf_hub_url(nlp_model_name, revision="main"))
self.nlp_models.append(InferenceClient(nlp_model_name))
except:
self.nlp_models.append(None)
def get_nlp_response(self, input_text, model_index):
if self.nlp_models[model_index]:
response = self.nlp_models[model_index].text_generation(input_text)
return response.generated_text
else:
return "NLP model not available."
class Component:
def __init__(self, type, properties=None, id=None):
self.id = id or random.randint(1000, 9999)
self.type = type
self.properties = properties or self.components_registry[type]["properties"].copy()
def to_dict(self):
return {
"id": self.id,
"type": self.type,
"properties": self.properties,
}
def render(self):
if self.type == "Dropdown":
self.properties["choices"] = str(self.properties["choices"]).replace("[", "").replace("]", "").replace("'", "")
return self.components_registry[self.type]["code_snippet"].format(**self.properties)
def update_app_canvas(self):
components_html = "".join([f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>" for component in self.app_state["components"]])
return components_html
def add_component(self, component_type):
if component_type in self.components_registry:
new_component = self.Component(component_type)
self.app_state["components"].append(new_component.to_dict())
return (
self.update_app_canvas(),
f"System: Added component: {component_type}\n",
)
else:
return None, f"Error: Invalid component type: {component_type}\n"
def run_terminal_command(self, command, history):
output = ""
try:
if command.startswith("add "):
component_type = command.split("add ")[1]
return self.add_component(component_type)
elif command.startswith("search "):
query = command.split("search ")[1]
return google(query)
elif command.startswith("i search "):
query = command.split("i search ")[1]
return i_s(query)
elif command.startswith("safe search "):
query = command.split("safesearch ")[1]
return safe_search(query)
elif command.startswith("read "):
file_path = command.split("read ")[1]
return parse_file_content(file_path)
elif command == "task":
return TASK_PROMPT
elif command == "modify":
return MODIFY_PROMPT
elif command == "log":
return LOG_PROMPT
elif command.startswith("understand test results "):
test_results = command.split("understand test results ")[1]
return self.understand_test_results(test_results)
elif command.startswith("compress history"):
return self.compress_history(history)
elif command == "help":
return self.get_help_message()
elif command == "exit":
exit()
else:
output = subprocess.check_output(command, shell=True).decode("utf-8")
except Exception as e:
output = str(e)
return output or "No output\n"
def compress_history(self, history):
compressed_history = ""
lines = history.strip().split("\n")
for line in lines:
if not line.strip().startswith("#"):
compressed_history += line + "\n"
return compressed_history
def understand_test_results(self, test_results):
# Logic to understand test results
return UNDERSTAND_TEST_RESULTS_PROMPT
def get_help_message(self):
return """
Available commands:
- add [component_type]: Add a component to the app canvas
- search [query]: Perform a Google search
- i search [query]: Perform an intelligent search
- safe search [query]: Perform a safe search
- read [file_path]: Read and parse the content of a Python module
- task: Prompt for a task to perform
- modify: Prompt to modify a component property
- log: Prompt to log a response
- understand test results [test_results]: Understand test results
- compress history: Compress the terminal history by removing comments
- help: Show this help message
- exit: Exit the program
"""
def process_input(self, input_text):
if input_text.strip().startswith("/"):
command = input_text.strip().lstrip("/")
output = self.run_terminal_command(command, self.terminal_history)
self.terminal_history += f"{input_text}\n{output}\n"
return output
else:
model_index = random.randint(0, len(self.nlp_models)-1)
response = self.get_nlp_response(input_text, model_index)
component_id, action, property_name, property_value = parse_action(response)
if component_id:
component = next((comp for comp in self.app_state["components"] if comp["id"] == component_id), None)
if component:
if action == "update":
component["properties"][property_name] = property_value
return (
self.update_app_canvas(),
f"System: Updated property '{property_name}' of component with ID {component_id}\n",
)
elif action == "remove":
self.app_state["components"].remove(component)
return (
self.update_app_canvas(),
f"System: Removed component with ID {component_id}\n",
)
else:
return None, f"Error: Invalid action: {action}\n"
else:
return None, f"Error: Component with ID {component_id} not found\n"
else:
return None, f"Error: Failed to parse action from NLP response\n"
def run(self):
print("Welcome to the Python App Builder!")
print("Type 'help' to see the available commands.")
print("-" * 50)
try:
while True:
try:
input_text = input("Enter input: ")
except EOFError:
print("Error: Input reading interrupted. Please provide valid input.")
continue
output, system_message = self.process_input(input_text)
if output:
print(output)
if system_message:
print(system_message)
except KeyboardInterrupt:
print("\nApplication stopped by user.")
if __name__ == "__main__":
app = App()
app.run() |