File size: 9,582 Bytes
fae4179
 
b8b7a36
 
 
 
4781efb
b8b7a36
 
 
4781efb
b8b7a36
 
 
 
 
 
 
 
39a6462
b8b7a36
 
 
 
4781efb
4cbab65
4781efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cbab65
4781efb
 
 
 
 
 
 
 
 
 
 
4cbab65
4781efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cbab65
4781efb
 
4cbab65
b2eac4f
4781efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd2fa4
 
 
 
 
4781efb
4fd2fa4
 
 
 
 
 
4781efb
 
 
 
 
4fd2fa4
 
4781efb
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import subprocess
import random
import json
from datetime import datetime

from huggingface_hub import InferenceClient, cached_download, hf_hub_url
import gradio as gr

from safe_search import safe_search
from i_search import google, i_search as i_s

from agent import (
    ACTION_PROMPT,
    ADD_PROMPT,
    COMPRESS_HISTORY_PROMPT,
    LOG_PROMPT,
    LOG_RESPONSE,
    MODIFY_PROMPT,
    PREFIX,
    SEARCH_QUERY,
    READ_PROMPT,
    TASK_PROMPT,
    UNDERSTAND_TEST_RESULTS_PROMPT,
)

from utils import parse_action, parse_file_content, read_python_module_structure


class App:
    def __init__(self):
        self.app_state = {"components": []}
        self.terminal_history = ""
        self.components_registry = {
            "Button": {
                "properties": {
                    "label": "Click Me",
                    "onclick": ""
                },
                "description": "A clickable button",
                "code_snippet": "gr.Button(value='{{label}}', variant='primary')"
            },
            "Text Input": {
                "properties": {
                    "value": "",
                    "placeholder": "Enter text"
                },
                "description": "A field for entering text",
                "code_snippet": "gr.Textbox(label='{{placeholder}}')"
            },
            "Image": {
                "properties": {
                    "src": "#",
                    "alt": "Image"
                },
                "description": "Displays an image",
                "code_snippet": "gr.Image(label='{{alt}}')"
            },
            "Dropdown": {
                "properties": {
                    "choices": ["Option 1", "Option 2"],
                    "value": ""
                },
                "description": "A dropdown menu for selecting options",
                "code_snippet": "gr.Dropdown(choices={{choices}}, label='Dropdown')"
            }
        }
        self.nlp_model_names = [
            "google/flan-t5-small",
            "Qwen/CodeQwen1.5-7B-Chat-GGUF",
            "bartowski/Codestral-22B-v0.1-GGUF",
            "bartowski/AutoCoder-GGUF"
        ]
        self.nlp_models = []
        self.initialize_nlp_models()

    def initialize_nlp_models(self):
        for nlp_model_name in self.nlp_model_names:
            try:
                cached_download(hf_hub_url(nlp_model_name, revision="main"))
                self.nlp_models.append(InferenceClient(nlp_model_name))
            except:
                self.nlp_models.append(None)

    def get_nlp_response(self, input_text, model_index):
        if self.nlp_models[model_index]:
            response = self.nlp_models[model_index].text_generation(input_text)
            return response.generated_text
        else:
            return "NLP model not available."

    class Component:
        def __init__(self, type, properties=None, id=None):
            self.id = id or random.randint(1000, 9999)
            self.type = type
            self.properties = properties or self.components_registry[type]["properties"].copy()

        def to_dict(self):
            return {
                "id": self.id,
                "type": self.type,
                "properties": self.properties,
            }

        def render(self):
            if self.type == "Dropdown":
                self.properties["choices"] = str(self.properties["choices"]).replace("[", "").replace("]", "").replace("'", "")
            return self.components_registry[self.type]["code_snippet"].format(**self.properties)

    def update_app_canvas(self):
        components_html = "".join([f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>" for component in self.app_state["components"]])
        return components_html

    def add_component(self, component_type):
        if component_type in self.components_registry:
            new_component = self.Component(component_type)
            self.app_state["components"].append(new_component.to_dict())
            return (
                self.update_app_canvas(),
                f"System: Added component: {component_type}\n",
            )
        else:
            return None, f"Error: Invalid component type: {component_type}\n"

    def run_terminal_command(self, command, history):
        output = ""
        try:
            if command.startswith("add "):
                component_type = command.split("add ")[1]
                return self.add_component(component_type)
            elif command.startswith("search "):
                query = command.split("search ")[1]
                return google(query)
            elif command.startswith("i search "):
                query = command.split("i search ")[1]
                return i_s(query)
            elif command.startswith("safe search "):
                query = command.split("safesearch ")[1]
                return safe_search(query)
            elif command.startswith("read "):
                file_path = command.split("read ")[1]
                return parse_file_content(file_path)
            elif command == "task":
                return TASK_PROMPT
            elif command == "modify":
                return MODIFY_PROMPT
            elif command == "log":
                return LOG_PROMPT
            elif command.startswith("understand test results "):
                test_results = command.split("understand test results ")[1]
                return self.understand_test_results(test_results)
            elif command.startswith("compress history"):
                return self.compress_history(history)
            elif command == "help":
                return self.get_help_message()
            elif command == "exit":
                exit()
            else:
                output = subprocess.check_output(command, shell=True).decode("utf-8")
        except Exception as e:
            output = str(e)
        return output or "No output\n"

    def compress_history(self, history):
        compressed_history = ""
        lines = history.strip().split("\n")
        for line in lines:
            if not line.strip().startswith("#"):
                compressed_history += line + "\n"
        return compressed_history

    def understand_test_results(self, test_results):
        # Logic to understand test results
        return UNDERSTAND_TEST_RESULTS_PROMPT

    def get_help_message(self):
        return """
        Available commands:
        - add [component_type]: Add a component to the app canvas
        - search [query]: Perform a Google search
        - i search [query]: Perform an intelligent search
        - safe search [query]: Perform a safe search
        - read [file_path]: Read and parse the content of a Python module
        - task: Prompt for a task to perform
        - modify: Prompt to modify a component property
        - log: Prompt to log a response
        - understand test results [test_results]: Understand test results
        - compress history: Compress the terminal history by removing comments
        - help: Show this help message
        - exit: Exit the program
        """

    def process_input(self, input_text):
        if input_text.strip().startswith("/"):
            command = input_text.strip().lstrip("/")
            output = self.run_terminal_command(command, self.terminal_history)
            self.terminal_history += f"{input_text}\n{output}\n"
            return output
        else:
            model_index = random.randint(0, len(self.nlp_models)-1)
            response = self.get_nlp_response(input_text, model_index)
            component_id, action, property_name, property_value = parse_action(response)
            if component_id:
                component = next((comp for comp in self.app_state["components"] if comp["id"] == component_id), None)
                if component:
                    if action == "update":
                        component["properties"][property_name] = property_value
                        return (
                            self.update_app_canvas(),
                            f"System: Updated property '{property_name}' of component with ID {component_id}\n",
                        )
                    elif action == "remove":
                        self.app_state["components"].remove(component)
                        return (
                            self.update_app_canvas(),
                            f"System: Removed component with ID {component_id}\n",
                        )
                    else:
                        return None, f"Error: Invalid action: {action}\n"
                else:
                    return None, f"Error: Component with ID {component_id} not found\n"
            else:
                return None, f"Error: Failed to parse action from NLP response\n"

def run(self):
    print("Welcome to the Python App Builder!")
    print("Type 'help' to see the available commands.")
    print("-" * 50)
    try:
        while True:
            try:
                input_text = input("Enter input: ")
            except EOFError:
                print("Error: Input reading interrupted. Please provide valid input.")
                continue

            output, system_message = self.process_input(input_text)
            if output:
                print(output)
            if system_message:
                print(system_message)
    except KeyboardInterrupt:
        print("\nApplication stopped by user.")


if __name__ == "__main__":
    app = App()
    app.run()