MistriDevLab / app.py
acecalisto3's picture
Update app.py
0843d32 verified
raw
history blame
12.9 kB
import os
import subprocess
import random
import json
from datetime import datetime
from huggingface_hub import InferenceClient, cached_download, hf_hub_url
import gradio as gr
from safe_search import safe_search
from i_search import google, i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
class App:
def __init__(self):
self.app_state = {"components": []}
self.terminal_history = ""
self.components_registry = {
"Button": {
"properties": {
"label": "Click Me",
"onclick": ""
},
"description": "A clickable button",
"code_snippet": "gr.Button(value='{{label}}', variant='primary')"
},
"Text Input": {
"properties": {
"value": "",
"placeholder": "Enter text"
},
"description": "A field for entering text",
"code_snippet": "gr.Textbox(label='{{placeholder}}')"
},
"Image": {
"properties": {
"src": "#",
"alt": "Image"
},
"description": "Displays an image",
"code_snippet": "gr.Image(label='{{alt}}')"
},
"Dropdown": {
"properties": {
"choices": ["Option 1", "Option 2"],
"value": ""
},
"description": "A dropdown menu for selecting options",
"code_snippet": "gr.Dropdown(choices={{choices}}, label='Dropdown')"
}
}
self.nlp_model_names = [
"google/flan-t5-small",
"Qwen/CodeQwen1.5-7B-Chat-GGUF",
"bartowski/Codestral-22B-v0.1-GGUF",
"bartowski/AutoCoder-GGUF"
]
self.nlp_models = []
self.initialize_nlp_models()
def initialize_nlp_models(self):
for nlp_model_name in self.nlp_model_names:
try:
cached_download(hf_hub_url(nlp_model_name, revision="main"))
self.nlp_models.append(InferenceClient(nlp_model_name))
except:
self.nlp_models.append(None)
def get_nlp_response(self, input_text, model_index):
if self.nlp_models[model_index]:
response = self.nlp_models[model_index].text_generation(input_text)
return response.generated_text
else:
return "NLP model not available."
def update_app_canvas(self):
components_html = "".join([f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>" for component in self.app_state["components"]])
return components_html
def add_component(self, component_type, properties=None):
try:
new_component = {
"type": component_type,
"properties": properties or {}
}
self.app_state["components"].append(new_component)
except Exception as e:
print(f"Error adding component: {e}")
def run_terminal_command(self, command, history):
output = ""
try:
if command.startswith("add "):
component_type = command.split("add ")[1]
return self.add_component(component_type)
elif command.startswith("search "):
query = command.split("search ")[1]
return google(query)
elif command.startswith("i search "):
query = command.split("i search ")[1]
return i_s(query)
elif command.startswith("safe search "):
query = command.split("safesearch ")[1]
return safe_search(query)
elif command.startswith("read "):
file_path = command.split("read ")[1]
return parse_file_content(file_path)
elif command == "task":
return TASK_PROMPT
elif command == "modify":
return MODIFY_PROMPT
elif command == "log":
return LOG_PROMPT
elif command.startswith("understand test results "):
test_results = command.split("understand test results ")[1]
return self.understand_test_results(test_results)
elif command.startswith("compress history"):
return self.compress_history(history)
elif command == "help":
return self.get_help_message()
elif command == "exit":
exit()
else:
output = subprocess.check_output(command, shell=True).decode("utf-8")
except Exception as e:
output = str(e)
return output or "No output\n"
def compress_history(self, history):
compressed_history = ""
lines = history.strip().split("\n")
for line in lines:
if not line.strip().startswith("#"):
compressed_history += line + "\n"
return compressed_history
def understand_test_results(self, test_results):
return UNDERSTAND_TEST_RESULTS_PROMPT
def get_help_message(self):
return """
Available commands:
- add [component_type]: Add a component to the app canvas
- search [query]: Perform a Google search
- i search [query]: Perform an intelligent search
- safe search [query]: Perform a safe search
- read [file_path]: Read and parse the content of a Python module
- task: Prompt for a task to perform
- modify: Prompt to modify a component property
- log: Prompt to log a response
- understand test results [test_results]: Understand test results
- compress history: Compress the terminal history by removing comments
- help: Show this help message
- exit: Exit the program
"""
def process_input(self, input_text):
if input_text.strip().startswith("/"):
command = input_text.strip().lstrip("/")
output = self.run_terminal_command(command, self.terminal_history)
self.terminal_history += f"{input_text}\n{output}\n"
return output, ""
else:
model_index = random.randint(0, len(self.nlp_models)-1)
response = self.get_nlp_response(input_text, model_index)
component_id, action, property_name, property_value = parse_action(response)
if component_id:
component = next((comp for comp in self.app_state["components"] if comp["id"] == component_id), None)
if component:
if action == "update":
component["properties"][property_name] = property_value
return self.update_app_canvas(), f"System: Updated property '{property_name}' of component with ID {component_id}\n"
elif action == "remove":
self.app_state["components"].remove(component)
return self.update_app_canvas(), f"System: Removed component with ID {component_id}\n"
else:
return "", f"Error: Invalid action: {action}\n"
else:
return "", f"Error: Component with ID {component_id} not found\n"
else:
return "", f"Error: Failed to parse action from NLP response\n"
def build_app(self):
with gr.Blocks() as demo:
for component in self.app_state["components"]:
component_type = component["type"]
properties = component["properties"]
if component_type == "Button":
gr.Button(value=properties["label"], variant="primary")
elif component_type == "Text Input":
gr.Textbox(label=properties["placeholder"])
elif component_type == "Image":
gr.Image(label=properties["alt"])
elif component_type == "Dropdown":
gr.Dropdown(choices=properties["choices"], label="Dropdown")
with gr.Tab("Terminal"):
gr.Markdown("## Terminal")
terminal_input = gr.Textbox(label="Input")
terminal_output = gr.Textbox(label="Output")
run_terminal_command_button = gr.Button("Run Command")
run_terminal_command_button.click(
self.run_terminal_command,
inputs=[terminal_input],
outputs=[terminal_output]
)
with gr.Tab("NLP Models"):
gr.Markdown("## Available NLP Models")
model_index = gr.Slider(label="Model Index", minimum=0, maximum=len(self.nlp_model_names)-1, step=1)
input_text = gr.Textbox(label="Input Text")
get_nlp_response_button = gr.Button("Get NLP Response")
get_nlp_response_button.click(
self.get_nlp_response,
inputs=[input_text, model_index],
outputs="text"
)
return demo
def run(self):
self._print_welcome_message()
while True:
try:
input_text = self._get_user_input()
if input_text.lower() == 'exit':
break
elif input_text.lower() == 'launch':
self.launch_app()
continue
output, system_message = self.process_input(input_text)
self._display_output(output, system_message)
except EOFError:
print("Error: Input reading interrupted. Please provide valid input.")
except KeyboardInterrupt:
print("\nApplication stopped by user.")
break
except Exception as e:
print(f"An error occurred: {str(e)}")
def _print_welcome_message(self):
print("Welcome to the Python App Builder!")
print("Type 'help' to see the available commands.")
print("Type 'launch' to build
print("Type 'launch' to build and launch the Gradio app.")
print("Type 'exit' to quit the application.")
print("-" * 50)
def _get_user_input(self):
return input("Enter input: ").strip()
def _display_output(self, output, system_message):
if output:
print(output)
if system_message:
print(system_message)
def launch_app(self):
demo = self.build_app()
demo.launch()
def main():
try:
app = App()
demo = app.build_app()
demo.launch()
except Exception as e:
print(f"Error launching app: {e}")
if __name__ == "__main__":
main()
def run(self):
self._print_welcome_message()
while True:
try:
input_text = self._get_user_input()
if input_text.lower() == 'exit':
break
elif input_text.lower() == 'launch':
self.launch_app()
continue
output, system_message = self.process_input(input_text)
self._display_output(output, system_message)
except EOFError:
print("Error: Input reading interrupted. Please provide valid input.")
except KeyboardInterrupt:
print("\nApplication stopped by user.")
break
except Exception as e:
print(f"An error occurred: {str(e)}")
def _print_welcome_message(self):
print("Welcome to the Python App Builder!")
print("Type 'help' to see the available commands.")
print("Type 'launch' to build and launch the Gradio app.")
print("Type 'exit' to quit the application.")
print("-" * 50)
def _get_user_input(self):
return input("Enter input: ").strip()
def _display_output(self, output, system_message):
if output:
print(output)
if system_message:
print(system_message)
def launch_app(self):
demo = self.build_app()
demo.launch()
def main():
try:
app = App()
demo = app.build_app()
demo.launch()
except Exception as e:
print(f"Error launching app: {e}")
if __name__ == "__main__":
main()