MistriDevLab / app.py
acecalisto3's picture
Update app.py
c58e377 verified
raw
history blame
9.08 kB
import os
import subprocess
import random
import json
from blocks import Block
from datetime import datetime
from gradio import blocks
from safe_search import safe_search
from i_search import google, i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
class App(Block):
def __init__(self):
super().__init__()
self.app_state = {"components": []}
self.terminal_history = ""
self.components_registry = {
"Button": {
"properties": {
"label": "Click Me",
"onclick": ""
},
"description": "A clickable button",
"code_snippet": "gr.Button(value='{{label}}', variant='primary')"
},
"Text Input": {
"properties": {
"value": "",
"placeholder": "Enter text"
},
"description": "A field for entering text",
"code_snippet": "gr.Textbox(label='{{placeholder}}')"
},
"Image": {
"properties": {
"src": "#",
"alt": "Image"
},
"description": "Displays an image",
"code_snippet": "gr.Image(label='{{alt}}')"
},
"Dropdown": {
"properties": {
"choices": ["Option 1", "Option 2"],
"value": ""
},
"description": "A dropdown menu for selecting options",
"code_snippet": "gr.Dropdown(choices={{choices}}, label='Dropdown')"
}
}
self.nlp_model_names = [
"google/flan-t5-small",
"Qwen/CodeQwen1.5-7B-Chat-GGUF",
"bartowski/Codestral-22B-v0.1-GGUF",
"bartowski/AutoCoder-GGUF"
]
self.nlp_models = []
self.initialize_nlp_models()
def initialize_nlp_models(self):
for nlp_model_name in self.nlp_model_names:
try:
cached_download(hf_hub_url(nlp_model_name, revision="main"))
self.nlp_models.append(InferenceClient(nlp_model_name))
except:
self.nlp_models.append(None)
def get_nlp_response(self, input_text, model_index):
if self.nlp_models[model_index]:
response = self.nlp_models[model_index].text_generation(input_text)
return response.generated_text
else:
return "NLP model not available."
class Component:
def __init__(self, type, properties=None, id=None):
self.id = id or random.randint(1000, 9999)
self.type = type
self.properties = properties or self.components_registry[type]["properties"].copy()
def to_dict(self):
return {
"id": self.id,
"type": self.type,
"properties": self.properties,
}
def render(self):
if self.type == "Dropdown":
self.properties["choices"] = str(self.properties["choices"]).replace("[", "").replace("]", "").replace("'", "")
return self.components_registry[self.type]["code_snippet"].format(**self.properties)
def update_app_canvas(self):
components_html = "".join([f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>" for component in self.app_state["components"]])
return components_html
def add_component(self, component_type):
if component_type in self.components_registry:
new_component = self.Component(component_type)
self.app_state["components"].append(new_component.to_dict())
return (
self.update_app_canvas(),
f"System: Added component: {component_type}\n",
)
else:
return None, f"Error: Invalid component type: {component_type}\n"
def run_terminal_command(self, command, history):
output = ""
try:
if command.startswith("add "):
component_type = command.split("add ")[1]
return self.add_component(component_type)
elif command.startswith("search "):
query = command.split("search ")[1]
return google(query)
elif command.startswith("i search "):
query = command.split("i search ")[1]
return i_s(query)
elif command.startswith("safe search "):
query = command.split("safesearch ")[1]
return safe_search(query)
elif command.startswith("read "):
file_path = command.split("read ")[1]
return parse_file_content(file_path)
elif command == "task":
return TASK_PROMPT
elif command == "modify":
return MODIFY_PROMPT
elif command == "log":
return LOG_PROMPT
elif command.startswith("understand test results "):
test_results = command.split("understand test results ")[1]
return self.understand_test_results(test_results)
elif command.startswith("compress history"):
return self.compress_history(history)
elif command == "help":
return self.get_help_message()
elif command == "exit":
exit()
else:
output = subprocess.check_output(command, shell=True).decode("utf-8")
except Exception as e:
output = str(e)
return output or "No output\n"
def compress_history(self, history):
compressed_history = ""
lines = history.strip().split("\n")
for line in lines:
if not line.strip().startswith("#"):
compressed_history += line + "\n"
return compressed_history
def understand_test_results(self, test_results):
# Logic to understand test results
return UNDERSTAND_TEST_RESULTS_PROMPT
def get_help_message(self):
return """
Available commands:
- add [component_type]: Add a component to the app canvas
- search [query]: Perform a Google search
- i search [query]: Perform an intelligent search
- safe search [query]: Perform a safe search
- read [file_path]: Read and parse the content of a Python module
- task: Prompt for a task to perform
- modify: Prompt to modify a component property
- log: Prompt to log a response
- understand test results [test_results]: Understand test results
- compress history: Compress the terminal history by removing comments
- help: Show this help message
- exit: Exit the program
"""
def process_input(self, input_text):
if input_text.strip().startswith("/"):
command = input_text.strip().lstrip("/")
output = self.run_terminal_command(command, self.terminal_history)
self.terminal_history += f"{input_text}\n{output}\n"
return output
else:
model_index = random.randint(0, len(self.nlp_models)-1)
response = self.get_nlp_response(input_text, model_index)
component_id, action, property_name, property_value = parse_action(response)
if component_id:
component = next((comp for comp in self.app_state["components"] if comp["id"] == component_id), None)
if component:
if action == "update":
component["properties"][property_name] = property_value
return (
self.update_app_canvas(),
f"System: Updated property '{property_name}' of component with ID {component_id}\n",
)
elif action == "remove":
self.app_state["components"].remove(component)
return (
self.update_app_canvas(),
f"System: Removed component with ID {component_id}\n",
)
else:
return None, f"Error: Invalid action: {action}\n"
else:
return None, f"Error: Component with ID {component_id} not found\n"
else:
return None, f"Error: Failed to parse action from NLP response\n"
def run(self):
print("Welcome to the Python App Builder!")
print("Type 'help' to see the available commands.")
print("-" * 50)
self.launch()
if __name__ == "__main__":
app = App()
app.run()