Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,8 @@ from datetime import datetime
|
|
7 |
import logging
|
8 |
|
9 |
import gradio as gr
|
|
|
10 |
from huggingface_hub import InferenceClient, cached_download
|
11 |
-
from safe_search import safe_search
|
12 |
-
from i_search import google, i_search as i_s
|
13 |
|
14 |
# --- Configuration ---
|
15 |
VERBOSE = True # Enable verbose logging
|
@@ -23,8 +22,8 @@ API_KEY = "YOUR_API_KEY" # Replace with your actual Hugging Face API key
|
|
23 |
|
24 |
# --- Logging Setup ---
|
25 |
logging.basicConfig(
|
26 |
-
filename="app.log",
|
27 |
-
level=logging.INFO,
|
28 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
29 |
)
|
30 |
|
@@ -41,7 +40,7 @@ agents = [
|
|
41 |
PREFIX = """
|
42 |
{date_time_str}
|
43 |
Purpose: {purpose}
|
44 |
-
|
45 |
"""
|
46 |
|
47 |
LOG_PROMPT = """
|
@@ -52,70 +51,14 @@ LOG_RESPONSE = """
|
|
52 |
RESPONSE: {resp}
|
53 |
"""
|
54 |
|
55 |
-
COMPRESS_HISTORY_PROMPT = """
|
56 |
-
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
|
57 |
-
History:
|
58 |
-
{history}
|
59 |
-
"""
|
60 |
-
|
61 |
-
ACTION_PROMPT = """
|
62 |
-
You are a helpful AI assistant. You are working on the task: {task}
|
63 |
-
Your current history is:
|
64 |
-
{history}
|
65 |
-
What is your next thought?
|
66 |
-
thought:
|
67 |
-
What is your next action?
|
68 |
-
action:
|
69 |
-
"""
|
70 |
-
|
71 |
-
TASK_PROMPT = """
|
72 |
-
You are a helpful AI assistant. Your current history is:
|
73 |
-
{history}
|
74 |
-
What is the next task?
|
75 |
-
task:
|
76 |
-
"""
|
77 |
-
|
78 |
-
UNDERSTAND_TEST_RESULTS_PROMPT = """
|
79 |
-
You are a helpful AI assistant. The test results are:
|
80 |
-
{test_results}
|
81 |
-
What do you want to know about the test results?
|
82 |
-
thought:
|
83 |
-
"""
|
84 |
-
|
85 |
# --- Functions ---
|
86 |
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
|
87 |
-
|
88 |
-
prompt = " "
|
89 |
-
# Keep only the last 'max_history_turns' turns
|
90 |
for user_prompt, bot_response in history[-max_history_turns:]:
|
91 |
-
prompt += f"
|
92 |
-
|
93 |
-
prompt += f"[INST] {message} [/ "
|
94 |
return prompt
|
95 |
|
96 |
-
def run_llm(
|
97 |
-
prompt_template: str,
|
98 |
-
stop_tokens: List[str],
|
99 |
-
purpose: str,
|
100 |
-
**prompt_kwargs: Dict
|
101 |
-
) -> str:
|
102 |
-
"""Runs the LLM with the given prompt and parameters."""
|
103 |
-
seed = random.randint(1, 1111111111111111)
|
104 |
-
logging.info(f"Seed: {seed}") # Log the seed
|
105 |
-
|
106 |
-
content = PREFIX.format(
|
107 |
-
date_time_str=date_time_str,
|
108 |
-
purpose=purpose,
|
109 |
-
safe_search=safe_search,
|
110 |
-
) + prompt_template.format(**prompt_kwargs)
|
111 |
-
if VERBOSE:
|
112 |
-
logging.info(LOG_PROMPT.format(content)) # Log the prompt
|
113 |
-
|
114 |
-
resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY)
|
115 |
-
if VERBOSE:
|
116 |
-
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
117 |
-
return resp
|
118 |
-
|
119 |
def generate(
|
120 |
prompt: str,
|
121 |
history: List[Tuple[str, str]],
|
@@ -126,206 +69,43 @@ def generate(
|
|
126 |
top_p: float = TOP_P,
|
127 |
repetition_penalty: float = REPETITION_PENALTY,
|
128 |
) -> str:
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
date_time_str=date_time_str,
|
132 |
-
purpose=
|
133 |
-
|
134 |
-
) +
|
135 |
-
|
136 |
-
logging.info(LOG_PROMPT.format(content)) # Log the prompt
|
137 |
-
|
138 |
-
stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens)
|
139 |
-
resp = ""
|
140 |
-
for response in stream:
|
141 |
-
resp += response.token.text
|
142 |
-
|
143 |
if VERBOSE:
|
144 |
-
logging.info(
|
145 |
-
return resp
|
146 |
-
|
147 |
-
def compress_history(purpose: str, task: str, history: List[Tuple[str, str]], directory: str) -> str:
|
148 |
-
"""Compresses the history into a shorter summary."""
|
149 |
-
resp = run_llm(
|
150 |
-
COMPRESS_HISTORY_PROMPT,
|
151 |
-
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
152 |
-
purpose=purpose,
|
153 |
-
task=task,
|
154 |
-
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
|
155 |
-
)
|
156 |
-
history = "observation: {}\n".format(resp)
|
157 |
-
return history
|
158 |
-
|
159 |
-
def call_search(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
|
160 |
-
"""Performs a search based on the action input."""
|
161 |
-
logging.info(f"CALLING SEARCH: {action_input}")
|
162 |
-
try:
|
163 |
-
if "http" in action_input:
|
164 |
-
if "<" in action_input:
|
165 |
-
action_input = action_input.strip("<")
|
166 |
-
if ">" in action_input:
|
167 |
-
action_input = action_input.strip(">")
|
168 |
-
|
169 |
-
response = i_s(action_input)
|
170 |
-
logging.info(f"Search Result: {response}")
|
171 |
-
history.append(("observation: search result is: {}".format(response), ""))
|
172 |
-
else:
|
173 |
-
history.append(("observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n", ""))
|
174 |
-
except Exception as e:
|
175 |
-
history.append(("observation: {}\n".format(e), ""))
|
176 |
-
return "MAIN", None, history, task
|
177 |
-
|
178 |
-
def call_main(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
|
179 |
-
"""Handles the main agent interaction loop."""
|
180 |
-
logging.info(f"CALLING MAIN: {action_input}")
|
181 |
-
resp = run_llm(
|
182 |
-
ACTION_PROMPT,
|
183 |
-
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
184 |
-
purpose=purpose,
|
185 |
-
task=task,
|
186 |
-
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
|
187 |
-
)
|
188 |
-
lines = resp.strip().strip("\n").split("\n")
|
189 |
-
for line in lines:
|
190 |
-
if line == "":
|
191 |
-
continue
|
192 |
-
if line.startswith("thought: "):
|
193 |
-
history.append((line, ""))
|
194 |
-
logging.info(f"Thought: {line}")
|
195 |
-
elif line.startswith("action: "):
|
196 |
-
action_name, action_input = parse_action(line)
|
197 |
-
logging.info(f"Action: {action_name} - {action_input}")
|
198 |
-
history.append((line, ""))
|
199 |
-
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
200 |
-
task = "END"
|
201 |
-
return action_name, action_input, history, task
|
202 |
-
else:
|
203 |
-
return action_name, action_input, history, task
|
204 |
-
else:
|
205 |
-
history.append((line, ""))
|
206 |
-
logging.info(f"Other Output: {line}")
|
207 |
-
return "MAIN", None, history, task
|
208 |
-
|
209 |
-
def call_set_task(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
|
210 |
-
"""Sets a new task for the agent."""
|
211 |
-
logging.info(f"CALLING SET_TASK: {action_input}")
|
212 |
-
task = run_llm(
|
213 |
-
TASK_PROMPT,
|
214 |
-
stop_tokens=[],
|
215 |
-
purpose=purpose,
|
216 |
-
task=task,
|
217 |
-
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
|
218 |
-
).strip("\n")
|
219 |
-
history.append(("observation: task has been updated to: {}".format(task), ""))
|
220 |
-
return "MAIN", None, history, task
|
221 |
-
|
222 |
-
def end_fn(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
|
223 |
-
"""Ends the agent interaction."""
|
224 |
-
logging.info(f"CALLING END_FN: {action_input}")
|
225 |
-
task = "END"
|
226 |
-
return "COMPLETE", "COMPLETE", history, task
|
227 |
-
|
228 |
-
NAME_TO_FUNC: Dict[str, callable] = {
|
229 |
-
"MAIN": call_main,
|
230 |
-
"UPDATE-TASK": call_set_task,
|
231 |
-
"SEARCH": call_search,
|
232 |
-
"COMPLETE": end_fn,
|
233 |
-
}
|
234 |
-
|
235 |
-
def run_action(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_name: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
|
236 |
-
"""Executes the specified action."""
|
237 |
-
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
|
238 |
-
try:
|
239 |
-
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
240 |
-
action_name = "COMPLETE"
|
241 |
-
task = "END"
|
242 |
-
return action_name, "COMPLETE", history, task
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
except Exception as e:
|
257 |
-
history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n", ""))
|
258 |
-
logging.error(f"Error in run_action: {e}")
|
259 |
-
return "MAIN", None, history, task
|
260 |
-
|
261 |
-
def run(purpose: str, history: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
262 |
-
"""Main agent interaction loop."""
|
263 |
-
task = None
|
264 |
-
directory = "./"
|
265 |
-
if history:
|
266 |
-
history = str(history).strip("[]")
|
267 |
-
if not history:
|
268 |
-
history = []
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
logging.info(f"Purpose: {purpose}")
|
275 |
-
logging.info(f"Task: {task}")
|
276 |
-
logging.info(f"---")
|
277 |
-
logging.info(f"History: {history}")
|
278 |
-
logging.info(f"---")
|
279 |
-
|
280 |
-
action_name, action_input, history, task = run_action(
|
281 |
-
purpose,
|
282 |
-
task,
|
283 |
-
history,
|
284 |
-
directory,
|
285 |
-
action_name,
|
286 |
-
action_input,
|
287 |
-
)
|
288 |
-
yield (history)
|
289 |
-
if task == "END":
|
290 |
-
return (history)
|
291 |
-
|
292 |
-
################################################
|
293 |
-
|
294 |
-
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 5) -> str:
|
295 |
-
"""Formats the prompt for the LLM, including the message and relevant history."""
|
296 |
-
prompt = " "
|
297 |
-
# Keep only the last 'max_history_turns' turns
|
298 |
-
for user_prompt, bot_response in history[-max_history_turns:]:
|
299 |
-
prompt += f"[INST] {user_prompt} [/ "
|
300 |
-
prompt += f" {bot_response}"
|
301 |
-
prompt += f"[INST] {message} [/ "
|
302 |
-
return prompt
|
303 |
-
|
304 |
-
def parse_action(line: str) -> Tuple[str, str]:
|
305 |
-
"""Parses the action line to get the action name and input."""
|
306 |
-
parts = line.split(":", 1)
|
307 |
-
if len(parts) == 2:
|
308 |
-
action_name = parts[0].replace("action", "").strip()
|
309 |
-
action_input = parts[1].strip()
|
310 |
-
else:
|
311 |
-
action_name = parts[0].replace("action", "").strip()
|
312 |
-
action_input = ""
|
313 |
-
return action_name, action_input
|
314 |
|
315 |
def main():
|
316 |
-
"""Main function to run the Gradio interface."""
|
317 |
-
global client
|
318 |
-
# Initialize the LLM client with your API key
|
319 |
-
try:
|
320 |
-
client = InferenceClient(
|
321 |
-
MODEL_NAME,
|
322 |
-
token=API_KEY # Replace with your actual API key
|
323 |
-
)
|
324 |
-
except Exception as e:
|
325 |
-
logging.error(f"Error initializing LLM client: {e}")
|
326 |
-
print("Error initializing LLM client. Please check your API key.")
|
327 |
-
return
|
328 |
-
|
329 |
with gr.Blocks() as demo:
|
330 |
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
|
331 |
gr.Markdown("### Your AI-Powered Development Companion")
|
@@ -365,8 +145,7 @@ def main():
|
|
365 |
|
366 |
def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
|
367 |
"""Handles the chat interaction."""
|
368 |
-
|
369 |
-
response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
|
370 |
history.append((message, response))
|
371 |
return history, history
|
372 |
|
@@ -386,4 +165,5 @@ def main():
|
|
386 |
demo.launch()
|
387 |
|
388 |
if __name__ == "__main__":
|
389 |
-
main()
|
|
|
|
7 |
import logging
|
8 |
|
9 |
import gradio as gr
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
11 |
from huggingface_hub import InferenceClient, cached_download
|
|
|
|
|
12 |
|
13 |
# --- Configuration ---
|
14 |
VERBOSE = True # Enable verbose logging
|
|
|
22 |
|
23 |
# --- Logging Setup ---
|
24 |
logging.basicConfig(
|
25 |
+
filename="app.log",
|
26 |
+
level=logging.INFO,
|
27 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
28 |
)
|
29 |
|
|
|
40 |
PREFIX = """
|
41 |
{date_time_str}
|
42 |
Purpose: {purpose}
|
43 |
+
Agent: {agent_name}
|
44 |
"""
|
45 |
|
46 |
LOG_PROMPT = """
|
|
|
51 |
RESPONSE: {resp}
|
52 |
"""
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# --- Functions ---
|
55 |
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
|
56 |
+
prompt = ""
|
|
|
|
|
57 |
for user_prompt, bot_response in history[-max_history_turns:]:
|
58 |
+
prompt += f"Human: {user_prompt}\nAssistant: {bot_response}\n"
|
59 |
+
prompt += f"Human: {message}\nAssistant:"
|
|
|
60 |
return prompt
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
def generate(
|
63 |
prompt: str,
|
64 |
history: List[Tuple[str, str]],
|
|
|
69 |
top_p: float = TOP_P,
|
70 |
repetition_penalty: float = REPETITION_PENALTY,
|
71 |
) -> str:
|
72 |
+
# Load model and tokenizer
|
73 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
75 |
+
|
76 |
+
# Create a text generation pipeline
|
77 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
78 |
+
|
79 |
+
# Prepare the full prompt
|
80 |
+
date_time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
81 |
+
full_prompt = PREFIX.format(
|
82 |
date_time_str=date_time_str,
|
83 |
+
purpose=sys_prompt,
|
84 |
+
agent_name=agent_name
|
85 |
+
) + format_prompt(prompt, history)
|
86 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if VERBOSE:
|
88 |
+
logging.info(LOG_PROMPT.format(content=full_prompt))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Generate response
|
91 |
+
response = generator(
|
92 |
+
full_prompt,
|
93 |
+
max_new_tokens=max_new_tokens,
|
94 |
+
temperature=temperature,
|
95 |
+
top_p=top_p,
|
96 |
+
repetition_penalty=repetition_penalty,
|
97 |
+
do_sample=True
|
98 |
+
)[0]['generated_text']
|
99 |
|
100 |
+
# Extract the assistant's response
|
101 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
if VERBOSE:
|
104 |
+
logging.info(LOG_RESPONSE.format(resp=assistant_response))
|
105 |
+
|
106 |
+
return assistant_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
with gr.Blocks() as demo:
|
110 |
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
|
111 |
gr.Markdown("### Your AI-Powered Development Companion")
|
|
|
145 |
|
146 |
def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
|
147 |
"""Handles the chat interaction."""
|
148 |
+
response = generate(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
|
|
|
149 |
history.append((message, response))
|
150 |
return history, history
|
151 |
|
|
|
165 |
demo.launch()
|
166 |
|
167 |
if __name__ == "__main__":
|
168 |
+
main()
|
169 |
+
```
|