Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,6 @@ from i_search import i_search as i_s
|
|
9 |
from datetime import datetime
|
10 |
import logging
|
11 |
import json
|
12 |
-
import nltk # Import nltk for sentence tokenization
|
13 |
|
14 |
now = datetime.now()
|
15 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
@@ -25,7 +24,7 @@ logging.basicConfig(
|
|
25 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
26 |
)
|
27 |
|
28 |
-
agents =
|
29 |
"WEB_DEV",
|
30 |
"AI_SYSTEM_PROMPT",
|
31 |
"PYTHON_CODE_DEV"
|
@@ -81,12 +80,12 @@ thought:
|
|
81 |
"""
|
82 |
|
83 |
def format_prompt(message, history, max_history_turns=2):
|
84 |
-
prompt = "
|
85 |
# Keep only the last 'max_history_turns' turns
|
86 |
for user_prompt, bot_response in history[-max_history_turns:]:
|
87 |
-
prompt += f"[INST] {user_prompt} [/
|
88 |
-
prompt += f" {bot_response}
|
89 |
-
prompt += f"[INST] {message} [/
|
90 |
return prompt
|
91 |
|
92 |
def run_gpt(
|
@@ -146,7 +145,7 @@ def compress_history(purpose, task, history, directory):
|
|
146 |
def call_search(purpose, task, history, directory, action_input):
|
147 |
logging.info(f"CALLING SEARCH: {action_input}")
|
148 |
try:
|
149 |
-
|
150 |
if "http" in action_input:
|
151 |
if "<" in action_input:
|
152 |
action_input = action_input.strip("<")
|
@@ -160,7 +159,7 @@ def call_search(purpose, task, history, directory, action_input):
|
|
160 |
else:
|
161 |
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
|
162 |
except Exception as e:
|
163 |
-
history += "observation: {}
|
164 |
return "MAIN", None, history, task
|
165 |
|
166 |
def call_main(purpose, task, history, directory, action_input):
|
@@ -291,236 +290,13 @@ def run(purpose,history):
|
|
291 |
################################################
|
292 |
|
293 |
def format_prompt(message, history, max_history_turns=5):
|
294 |
-
prompt = "
|
295 |
# Keep only the last 'max_history_turns' turns
|
296 |
for user_prompt, bot_response in history[-max_history_turns:]:
|
297 |
-
prompt += f"[INST] {user_prompt} [/
|
298 |
-
prompt += f" {bot_response}
|
299 |
-
prompt += f"[INST] {message} [/
|
300 |
return prompt
|
301 |
-
agents =[
|
302 |
-
"WEB_DEV",
|
303 |
-
"AI_SYSTEM_PROMPT",
|
304 |
-
"PYTHON_CODE_DEV"
|
305 |
-
]
|
306 |
-
def generate(
|
307 |
-
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0,
|
308 |
-
):
|
309 |
-
seed = random.randint(1,1111111111111111)
|
310 |
-
|
311 |
-
# Correct the line:
|
312 |
-
if agent_name == "WEB_DEV":
|
313 |
-
agent = "You are a helpful AI assistant. You are a web developer."
|
314 |
-
if agent_name == "AI_SYSTEM_PROMPT":
|
315 |
-
agent = "You are a helpful AI assistant. You are an AI system."
|
316 |
-
if agent_name == "PYTHON_CODE_DEV":
|
317 |
-
agent = "You are a helpful AI assistant. You are a Python code developer."
|
318 |
-
system_prompt = agent
|
319 |
-
temperature = float(temperature)
|
320 |
-
if temperature < 1e-2:
|
321 |
-
temperature = 1e-2
|
322 |
-
top_p = float(top_p)
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
|
327 |
-
"""Generates text in chunks to avoid token limit errors."""
|
328 |
-
sentences = nltk.sent_tokenize(input_text)
|
329 |
-
generated_text = []
|
330 |
-
generator = pipeline('text-generation', model=model)
|
331 |
-
|
332 |
-
for sentence in sentences:
|
333 |
-
# Tokenize the sentence and check if it's within the limit
|
334 |
-
tokens = generator.tokenizer(sentence).input_ids
|
335 |
-
if len(tokens) + max_tokens_to_generate <= 32768:
|
336 |
-
# Generate text for this chunk
|
337 |
-
response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
|
338 |
-
generated_text.append(response[0]['generated_text'])
|
339 |
-
else:
|
340 |
-
# Handle cases where the sentence is too long
|
341 |
-
# You could split the sentence further or skip it
|
342 |
-
print(f"Sentence too long: {sentence}")
|
343 |
-
|
344 |
-
return ''.join(generated_text)
|
345 |
-
|
346 |
-
formatted_prompt = format_prompt(prompt, history, max_history_turns=5) # Truncated history
|
347 |
-
logging.info(f"Formatted Prompt: {formatted_prompt}")
|
348 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
349 |
-
output = ""
|
350 |
-
|
351 |
-
for response in stream:
|
352 |
-
output += response.token.text
|
353 |
-
yield output
|
354 |
-
return output
|
355 |
-
|
356 |
-
|
357 |
-
additional_inputs=[
|
358 |
-
gr.Dropdown(
|
359 |
-
label="Agents",
|
360 |
-
choices=[s for s in agents],
|
361 |
-
value=agents[0],
|
362 |
-
interactive=True,
|
363 |
-
),
|
364 |
-
gr.Textbox(
|
365 |
-
label="System Prompt",
|
366 |
-
max_lines=1,
|
367 |
-
interactive=True,
|
368 |
-
),
|
369 |
-
gr.Slider(
|
370 |
-
label="Temperature",
|
371 |
-
value=0.9,
|
372 |
-
minimum=0.0,
|
373 |
-
maximum=1.0,
|
374 |
-
step=0.05,
|
375 |
-
interactive=True,
|
376 |
-
info="Higher values produce more diverse outputs",
|
377 |
-
),
|
378 |
-
|
379 |
-
gr.Slider(
|
380 |
-
label="Max new tokens",
|
381 |
-
value=1048*10,
|
382 |
-
minimum=0,
|
383 |
-
maximum=1048*10,
|
384 |
-
step=64,
|
385 |
-
interactive=True,
|
386 |
-
info="The maximum numbers of new tokens",
|
387 |
-
),
|
388 |
-
gr.Slider(
|
389 |
-
label="Top-p (nucleus sampling)",
|
390 |
-
value=0.90,
|
391 |
-
minimum=0.0,
|
392 |
-
maximum=1,
|
393 |
-
step=0.05,
|
394 |
-
interactive=True,
|
395 |
-
info="Higher values sample more low-probability tokens",
|
396 |
-
),
|
397 |
-
gr.Slider(
|
398 |
-
label="Repetition penalty",
|
399 |
-
value=1.2,
|
400 |
-
minimum=1.0,
|
401 |
-
maximum=2.0,
|
402 |
-
step=0.05,
|
403 |
-
interactive=True,
|
404 |
-
info="Penalize repeated tokens",
|
405 |
-
),
|
406 |
-
|
407 |
-
|
408 |
-
]
|
409 |
-
|
410 |
-
examples = [
|
411 |
-
["Help me set up TypeScript configurations and integrate ts-loader in my existing React project.",
|
412 |
-
"Update Webpack Configurations",
|
413 |
-
"Install Dependencies",
|
414 |
-
"Configure Ts-Loader",
|
415 |
-
"TypeChecking Rules Setup",
|
416 |
-
"React Specific Settings",
|
417 |
-
"Compilation Options",
|
418 |
-
"Test Runner Configuration"],
|
419 |
-
|
420 |
-
["Guide me through building a serverless microservice using AWS Lambda and API Gateway, connecting to DynamoDB for storage.",
|
421 |
-
"Set Up AWS Account",
|
422 |
-
"Create Lambda Function",
|
423 |
-
"APIGateway Integration",
|
424 |
-
"Define DynamoDB Table Scheme",
|
425 |
-
"Connect Service To DB",
|
426 |
-
"Add Authentication Layers",
|
427 |
-
"Monitor Metrics and Set Alarms"],
|
428 |
-
|
429 |
-
["Migrate our current monolithic PHP application towards containerized services using Docker and Kubernetes for scalability.",
|
430 |
-
"Architectural Restructuring Plan",
|
431 |
-
"Containerisation Process With Docker",
|
432 |
-
"Service Orchestration With Kubernetes",
|
433 |
-
"Load Balancing Strategies",
|
434 |
-
"Persistent Storage Solutions",
|
435 |
-
"Network Policies Enforcement",
|
436 |
-
"Continuous Integration / Continuous Delivery"],
|
437 |
-
|
438 |
-
["Provide guidance on integrating WebAssembly modules compiled from C++ source files into an ongoing web project.",
|
439 |
-
"Toolchain Selection (Emscripten vs. LLVM)",
|
440 |
-
"Setting Up Compiler Environment",
|
441 |
-
".cpp Source Preparation",
|
442 |
-
"Module Building Approach",
|
443 |
-
"Memory Management Considerations",
|
444 |
-
"Performance Tradeoffs",
|
445 |
-
"Seamless Web Assembly Embedding"]
|
446 |
-
]
|
447 |
-
|
448 |
-
def parse_action(line):
|
449 |
-
action_name, action_input = line.strip("action: ").split("=")
|
450 |
-
action_input = action_input.strip()
|
451 |
-
return action_name, action_input
|
452 |
-
|
453 |
-
def get_file_tree(path):
|
454 |
-
"""
|
455 |
-
Recursively explores a directory and returns a nested dictionary representing its file tree.
|
456 |
-
"""
|
457 |
-
tree = {}
|
458 |
-
for item in os.listdir(path):
|
459 |
-
item_path = os.path.join(path, item)
|
460 |
-
if os.path.isdir(item_path):
|
461 |
-
tree[item] = get_file_tree(item_path)
|
462 |
-
else:
|
463 |
-
tree[item] = None
|
464 |
-
return tree
|
465 |
-
|
466 |
-
def display_file_tree(tree, indent=0):
|
467 |
-
"""
|
468 |
-
Prints a formatted representation of the file tree.
|
469 |
-
"""
|
470 |
-
for name, subtree in tree.items():
|
471 |
-
print(f"{' ' * indent}{name}")
|
472 |
-
if subtree is not None:
|
473 |
-
display_file_tree(subtree, indent + 1)
|
474 |
-
|
475 |
-
def project_explorer(path):
|
476 |
-
"""
|
477 |
-
Displays the file tree of a given path in a Streamlit app.
|
478 |
-
"""
|
479 |
-
tree = get_file_tree(path)
|
480 |
-
display_file_tree(tree)
|
481 |
-
|
482 |
-
def chat_app_logic(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
483 |
-
# Your existing code here
|
484 |
-
|
485 |
-
try:
|
486 |
-
# Attempt to join the generator output
|
487 |
-
response = ''.join(generate(
|
488 |
-
model=model,
|
489 |
-
messages=messages,
|
490 |
-
stream=True,
|
491 |
-
temperature=0.7,
|
492 |
-
max_tokens=1500
|
493 |
-
))
|
494 |
-
except TypeError:
|
495 |
-
# If joining fails, collect the output in a list
|
496 |
-
response_parts = []
|
497 |
-
for part in generate(
|
498 |
-
model=model,
|
499 |
-
messages=messages,
|
500 |
-
stream=True,
|
501 |
-
temperature=0.7,
|
502 |
-
max_tokens=1500
|
503 |
-
):
|
504 |
-
if isinstance(part, str):
|
505 |
-
response_parts.append(part)
|
506 |
-
elif isinstance(part, dict) and 'content' in part:
|
507 |
-
response_parts.append(part['content']),
|
508 |
-
|
509 |
-
response = ''.join(response_parts,
|
510 |
-
# Run the model and get the response (convert generator to string)
|
511 |
-
prompt=message,
|
512 |
-
history=history,
|
513 |
-
agent_name=agent_name,
|
514 |
-
sys_prompt=sys_prompt,
|
515 |
-
temperature=temperature,
|
516 |
-
max_new_tokens=max_new_tokens,
|
517 |
-
top_p=top_p,
|
518 |
-
repetition_penalty=repetition_penalty,
|
519 |
-
)
|
520 |
-
history.append((message, response))
|
521 |
-
return history
|
522 |
-
|
523 |
-
return history
|
524 |
|
525 |
def main():
|
526 |
with gr.Blocks() as demo:
|
@@ -554,11 +330,11 @@ def main():
|
|
554 |
with gr.Tab("Chat App"):
|
555 |
history = gr.State([])
|
556 |
for example in examples:
|
557 |
-
gr.Button(
|
558 |
|
559 |
# Connect components to the chat app logic
|
560 |
-
submit_button.click(
|
561 |
-
message.submit(
|
562 |
# Connect components to the project explorer
|
563 |
explore_button.click(project_explorer, inputs=[project_path], outputs=project_output)
|
564 |
|
|
|
9 |
from datetime import datetime
|
10 |
import logging
|
11 |
import json
|
|
|
12 |
|
13 |
now = datetime.now()
|
14 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
|
|
24 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
25 |
)
|
26 |
|
27 |
+
agents =[
|
28 |
"WEB_DEV",
|
29 |
"AI_SYSTEM_PROMPT",
|
30 |
"PYTHON_CODE_DEV"
|
|
|
80 |
"""
|
81 |
|
82 |
def format_prompt(message, history, max_history_turns=2):
|
83 |
+
prompt = " "
|
84 |
# Keep only the last 'max_history_turns' turns
|
85 |
for user_prompt, bot_response in history[-max_history_turns:]:
|
86 |
+
prompt += f"[INST] {user_prompt} [/ "
|
87 |
+
prompt += f" {bot_response}"
|
88 |
+
prompt += f"[INST] {message} [/ "
|
89 |
return prompt
|
90 |
|
91 |
def run_gpt(
|
|
|
145 |
def call_search(purpose, task, history, directory, action_input):
|
146 |
logging.info(f"CALLING SEARCH: {action_input}")
|
147 |
try:
|
148 |
+
|
149 |
if "http" in action_input:
|
150 |
if "<" in action_input:
|
151 |
action_input = action_input.strip("<")
|
|
|
159 |
else:
|
160 |
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
|
161 |
except Exception as e:
|
162 |
+
history += "observation: {}\n".format(e)
|
163 |
return "MAIN", None, history, task
|
164 |
|
165 |
def call_main(purpose, task, history, directory, action_input):
|
|
|
290 |
################################################
|
291 |
|
292 |
def format_prompt(message, history, max_history_turns=5):
|
293 |
+
prompt = " "
|
294 |
# Keep only the last 'max_history_turns' turns
|
295 |
for user_prompt, bot_response in history[-max_history_turns:]:
|
296 |
+
prompt += f"[INST] {user_prompt} [/ "
|
297 |
+
prompt += f" {bot_response}"
|
298 |
+
prompt += f"[INST] {message} [/ "
|
299 |
return prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
def main():
|
302 |
with gr.Blocks() as demo:
|
|
|
330 |
with gr.Tab("Chat App"):
|
331 |
history = gr.State([])
|
332 |
for example in examples:
|
333 |
+
gr.Button(example[0]).click(lambda event, x=example[0]: chat_app_logic, inputs=[x, message, purpose], outputs=chatbot)
|
334 |
|
335 |
# Connect components to the chat app logic
|
336 |
+
submit_button.click(lambda event, x=message, h=history: chat_app_logic, inputs=[x, h], outputs=chatbot)
|
337 |
+
message.submit(lambda event, x=message, h=history: chat_app_logic, inputs=[x, h], outputs=chatbot)
|
338 |
# Connect components to the project explorer
|
339 |
explore_button.click(project_explorer, inputs=[project_path], outputs=project_output)
|
340 |
|