Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,354 +1,582 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
import
|
4 |
-
from
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
def main():
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
if __name__ == "__main__":
|
146 |
-
main()
|
147 |
-
|
148 |
-
# Additional functionalities
|
149 |
-
def commit_and_push_changes(commit_message):
|
150 |
-
commands = [
|
151 |
-
"git add .",
|
152 |
-
f"git commit -m '{commit_message}'",
|
153 |
-
"git push"
|
154 |
-
]
|
155 |
-
for command in commands:
|
156 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
157 |
-
if result.returncode != 0:
|
158 |
-
st.error(f"Error executing command '{command}': {result.stderr}")
|
159 |
-
break
|
160 |
-
|
161 |
-
def chat_interface_with_agent(input_text, agent_name):
|
162 |
-
agent_prompt = load_agent_prompt(agent_name)
|
163 |
-
if agent_prompt is None:
|
164 |
-
return f"Agent {agent_name} not found."
|
165 |
-
|
166 |
-
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
167 |
-
max_input_length = 900
|
168 |
-
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
169 |
-
if input_ids.shape[1] > max_input_length:
|
170 |
-
input_ids = input_ids[:, :max_input_length]
|
171 |
-
|
172 |
-
outputs = model.generate(input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id)
|
173 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
174 |
-
return response
|
175 |
-
|
176 |
-
def workspace_interface(project_name):
|
177 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
178 |
-
if not os.path.exists(PROJECT_ROOT):
|
179 |
-
os.makedirs(PROJECT_ROOT)
|
180 |
-
if not os.path.exists(project_path):
|
181 |
-
os.makedirs(project_path)
|
182 |
-
st.session_state.workspace_projects[project_name] = {"files": []}
|
183 |
-
st.session_state.current_state['workspace_chat']['project_name'] = project_name
|
184 |
-
commit_and_push_changes(f"Create project {project_name}")
|
185 |
-
return f"Project {project_name} created successfully."
|
186 |
-
else:
|
187 |
-
return f"Project {project_name} already exists."
|
188 |
-
|
189 |
-
def add_code_to_workspace(project_name, code, file_name):
|
190 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
191 |
-
if os.path.exists(project_path):
|
192 |
-
file_path = os.path.join(project_path, file_name)
|
193 |
-
with open(file_path, "w") as file:
|
194 |
-
file.write(code)
|
195 |
-
st.session_state.workspace_projects[project_name]["files"].append(file_name)
|
196 |
-
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
|
197 |
-
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
|
198 |
-
return f"Code added to {file_name} in project {project_name} successfully."
|
199 |
-
else:
|
200 |
-
return f"Project {project_name} does not exist."
|
201 |
-
|
202 |
-
def terminal_interface(command, project_name=None):
|
203 |
-
if project_name:
|
204 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
205 |
-
if not os.path.exists(project_path):
|
206 |
-
return f"Project {project_name} does not exist."
|
207 |
-
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
|
208 |
-
else:
|
209 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
210 |
-
if result.returncode == 0:
|
211 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
|
212 |
-
return result.stdout
|
213 |
-
else:
|
214 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
|
215 |
-
return result.stderr
|
216 |
-
|
217 |
-
def summarize_text(text):
|
218 |
-
summarizer = pipeline("summarization")
|
219 |
-
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
220 |
-
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
|
221 |
-
return summary[0]['summary_text']
|
222 |
-
|
223 |
-
def sentiment_analysis(text):
|
224 |
-
analyzer = pipeline("sentiment-analysis")
|
225 |
-
sentiment = analyzer(text)
|
226 |
-
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
|
227 |
-
return sentiment[0]
|
228 |
-
|
229 |
-
def generate_code(code_idea):
|
230 |
-
response = openai.ChatCompletion.create(
|
231 |
-
model="gpt-4",
|
232 |
-
messages=[
|
233 |
-
{"role": "system", "content": "You are an expert software developer."},
|
234 |
-
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
235 |
-
]
|
236 |
-
)
|
237 |
-
generated_code = response.choices[0].message['content'].strip()
|
238 |
-
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
239 |
-
return generated_code
|
240 |
-
|
241 |
-
def translate_code(code, input_language, output_language):
|
242 |
-
language_extensions = {
|
243 |
-
"Python": ".py",
|
244 |
-
"JavaScript": ".js",
|
245 |
-
# Add more languages and their extensions here
|
246 |
-
}
|
247 |
-
if input_language not in language_extensions:
|
248 |
-
raise ValueError(f"Invalid input language: {input_language}")
|
249 |
-
if output_language not in language_extensions:
|
250 |
-
raise ValueError(f"Invalid output language: {output_language}")
|
251 |
-
|
252 |
-
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
|
253 |
-
response = openai.ChatCompletion.create(
|
254 |
-
model="gpt-4",
|
255 |
-
messages=[
|
256 |
-
{"role": "system", "content": "You are an expert software developer."},
|
257 |
-
{"role": "user", "content": prompt}
|
258 |
-
]
|
259 |
-
)
|
260 |
-
translated_code = response.choices[0].message['content'].strip()
|
261 |
-
st.session_state.current_state['toolbox']['translated_code'] = translated_code
|
262 |
-
return translated_code
|
263 |
-
|
264 |
-
# Streamlit App
|
265 |
-
st.title("AI Agent Creator")
|
266 |
-
|
267 |
-
# Sidebar navigation
|
268 |
-
st.sidebar.title("Navigation")
|
269 |
-
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
270 |
-
|
271 |
-
if app_mode == "AI Agent Creator":
|
272 |
-
# AI Agent Creator
|
273 |
-
st.header("Create an AI Agent from Text")
|
274 |
-
|
275 |
-
st.subheader("From Text")
|
276 |
-
agent_name = st.text_input("Enter agent name:")
|
277 |
-
text_input = st.text_area("Enter skills (one per line):")
|
278 |
-
if st.button("Create Agent"):
|
279 |
-
agent_prompt = create_agent_from_text(agent_name, text_input)
|
280 |
-
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
281 |
-
st.session_state.available_agents.append(agent_name)
|
282 |
-
|
283 |
-
elif app_mode == "Tool Box":
|
284 |
-
# Tool Box
|
285 |
-
st.header("AI-Powered Tools")
|
286 |
-
|
287 |
-
# Chat Interface
|
288 |
-
st.subheader("Chat with CodeCraft")
|
289 |
-
chat_input = st.text_area("Enter your message:")
|
290 |
-
if st.button("Send"):
|
291 |
-
if chat_input.startswith("@"):
|
292 |
-
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
|
293 |
-
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
|
294 |
-
chat_response = chat_interface_with_agent(chat_input, agent_name)
|
295 |
-
st.session_state.chat_history.append((chat_input, chat_response))
|
296 |
-
st.write(f"{agent_name}: {chat_response}")
|
297 |
-
|
298 |
-
# Code Generation
|
299 |
-
st.subheader("Generate Code")
|
300 |
-
code_idea = st.text_area("Enter your code idea:")
|
301 |
-
if st.button("Generate Code"):
|
302 |
-
generated_code = generate_code(code_idea)
|
303 |
-
st.code(generated_code, language='python')
|
304 |
-
|
305 |
-
# Code Translation
|
306 |
-
st.subheader("Translate Code")
|
307 |
-
code = st.text_area("Enter your code:")
|
308 |
-
input_language = st.selectbox("Input Language", ["Python", "JavaScript"])
|
309 |
-
output_language = st.selectbox("Output Language", ["Python", "JavaScript"])
|
310 |
-
if st.button("Translate Code"):
|
311 |
-
translated_code = translate_code(code, input_language, output_language)
|
312 |
-
st.code(translated_code, language=output_language.lower())
|
313 |
-
|
314 |
-
# Summarization
|
315 |
-
st.subheader("Summarize Text")
|
316 |
-
text_to_summarize = st.text_area("Enter text to summarize:")
|
317 |
-
if st.button("Summarize"):
|
318 |
-
summary = summarize_text(text_to_summarize)
|
319 |
-
st.write(summary)
|
320 |
-
|
321 |
-
# Sentiment Analysis
|
322 |
-
st.subheader("Sentiment Analysis")
|
323 |
-
text_to_analyze = st.text_area("Enter text for sentiment analysis:")
|
324 |
-
if st.button("Analyze Sentiment"):
|
325 |
-
sentiment = sentiment_analysis(text_to_analyze)
|
326 |
-
st.write(sentiment)
|
327 |
-
|
328 |
-
elif app_mode == "Workspace Chat App":
|
329 |
-
# Workspace Chat App
|
330 |
-
st.header("Workspace Chat App")
|
331 |
-
|
332 |
-
# Project Management
|
333 |
-
st.subheader("Manage Projects")
|
334 |
-
project_name = st.text_input("Enter project name:")
|
335 |
-
if st.button("Create Project"):
|
336 |
-
project_message = workspace_interface(project_name)
|
337 |
-
st.success(project_message)
|
338 |
-
|
339 |
-
# Add Code to Project
|
340 |
-
st.subheader("Add Code to Project")
|
341 |
-
project_name_for_code = st.text_input("Enter project name for code:")
|
342 |
-
code_content = st.text_area("Enter code content:")
|
343 |
-
file_name = st.text_input("Enter file name:")
|
344 |
-
if st.button("Add Code"):
|
345 |
-
add_code_message = add_code_to_workspace(project_name_for_code, code_content, file_name)
|
346 |
-
st.success(add_code_message)
|
347 |
-
|
348 |
-
# Terminal Interface
|
349 |
-
st.subheader("Terminal Interface")
|
350 |
-
terminal_command = st.text_area("Enter terminal command:")
|
351 |
-
project_name_for_terminal = st.text_input("Enter project name for terminal (optional):")
|
352 |
-
if st.button("Run Command"):
|
353 |
-
terminal_output = terminal_interface(terminal_command, project_name_for_terminal)
|
354 |
-
st.text(terminal_output)
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
+
import random
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
import gradio as gr
|
6 |
+
from safe_search import safe_search # Make sure you have this function defined
|
7 |
+
from i_search import google
|
8 |
+
from i_search import i_search as i_s
|
9 |
+
from datetime import datetime
|
10 |
+
import logging
|
11 |
+
import json
|
12 |
+
import nltk # Import nltk for the generate_text_chunked function
|
13 |
+
|
14 |
+
nltk.download('punkt') # Download the punkt tokenizer if you haven't already
|
15 |
+
|
16 |
+
now = datetime.now()
|
17 |
+
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
18 |
+
|
19 |
+
client = InferenceClient(
|
20 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1"
|
21 |
+
)
|
22 |
+
|
23 |
+
# --- Set up logging ---
|
24 |
+
logging.basicConfig(
|
25 |
+
filename="app.log", # Name of the log file
|
26 |
+
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
|
27 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
28 |
+
)
|
29 |
+
|
30 |
+
agents = [
|
31 |
+
"WEB_DEV",
|
32 |
+
"AI_SYSTEM_PROMPT",
|
33 |
+
"PYTHON_CODE_DEV"
|
34 |
+
]
|
35 |
+
############################################
|
36 |
+
|
37 |
+
VERBOSE = True
|
38 |
+
MAX_HISTORY = 5
|
39 |
+
# MODEL = "gpt-3.5-turbo" # "gpt-4"
|
40 |
+
|
41 |
+
PREFIX = """
|
42 |
+
{date_time_str}
|
43 |
+
Purpose: {purpose}
|
44 |
+
Safe Search: {safe_search}
|
45 |
+
"""
|
46 |
+
|
47 |
+
LOG_PROMPT = """
|
48 |
+
PROMPT: {content}
|
49 |
+
"""
|
50 |
+
|
51 |
+
LOG_RESPONSE = """
|
52 |
+
RESPONSE: {resp}
|
53 |
+
"""
|
54 |
+
|
55 |
+
COMPRESS_HISTORY_PROMPT = """
|
56 |
+
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
|
57 |
+
History:
|
58 |
+
{history}
|
59 |
+
"""
|
60 |
+
|
61 |
+
ACTION_PROMPT = """
|
62 |
+
You are a helpful AI assistant. You are working on the task: {task}
|
63 |
+
Your current history is:
|
64 |
+
{history}
|
65 |
+
What is your next thought?
|
66 |
+
thought:
|
67 |
+
What is your next action?
|
68 |
+
action:
|
69 |
+
"""
|
70 |
+
|
71 |
+
TASK_PROMPT = """
|
72 |
+
You are a helpful AI assistant. Your current history is:
|
73 |
+
{history}
|
74 |
+
What is the next task?
|
75 |
+
task:
|
76 |
+
"""
|
77 |
+
|
78 |
+
UNDERSTAND_TEST_RESULTS_PROMPT = """
|
79 |
+
You are a helpful AI assistant. The test results are:
|
80 |
+
{test_results}
|
81 |
+
What do you want to know about the test results?
|
82 |
+
thought:
|
83 |
+
"""
|
84 |
+
|
85 |
+
def format_prompt(message, history, max_history_turns=2):
|
86 |
+
prompt = "<s>"
|
87 |
+
# Keep only the last 'max_history_turns' turns
|
88 |
+
for user_prompt, bot_response in history[-max_history_turns:]:
|
89 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
90 |
+
prompt += f" {bot_response}</s> "
|
91 |
+
prompt += f"[INST] {message} [/INST]"
|
92 |
+
return prompt
|
93 |
+
|
94 |
+
def run_gpt(
|
95 |
+
prompt_template,
|
96 |
+
stop_tokens,
|
97 |
+
max_tokens,
|
98 |
+
purpose,
|
99 |
+
**prompt_kwargs,
|
100 |
+
):
|
101 |
+
seed = random.randint(1,1111111111111111)
|
102 |
+
logging.info(f"Seed: {seed}") # Log the seed
|
103 |
+
|
104 |
+
content = PREFIX.format(
|
105 |
+
date_time_str=date_time_str,
|
106 |
+
purpose=purpose,
|
107 |
+
safe_search=safe_search,
|
108 |
+
) + prompt_template.format(**prompt_kwargs)
|
109 |
+
if VERBOSE:
|
110 |
+
logging.info(LOG_PROMPT.format(content)) # Log the prompt
|
111 |
+
|
112 |
+
resp = client.text_generation(content, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
|
113 |
+
if VERBOSE:
|
114 |
+
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
115 |
+
return resp
|
116 |
+
|
117 |
+
def generate(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.7, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.5, model="mistralai/Mixtral-8x7B-Instruct-v0.1"):
|
118 |
+
# Use 'prompt' here instead of 'message'
|
119 |
+
formatted_prompt = format_prompt(prompt, history, max_history_turns=5) # Truncated history
|
120 |
+
logging.info(f"Formatted Prompt: {formatted_prompt}")
|
121 |
+
stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False)
|
122 |
+
resp = ""
|
123 |
+
for response in stream:
|
124 |
+
resp += response.token.text
|
125 |
+
|
126 |
+
if VERBOSE:
|
127 |
+
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
128 |
+
return resp
|
129 |
+
|
130 |
+
|
131 |
+
def compress_history(purpose, task, history, directory):
|
132 |
+
resp = run_gpt(
|
133 |
+
COMPRESS_HISTORY_PROMPT,
|
134 |
+
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
135 |
+
max_tokens=512,
|
136 |
+
purpose=purpose,
|
137 |
+
task=task,
|
138 |
+
history=history,
|
139 |
+
)
|
140 |
+
history = "observation: {}\n".format(resp)
|
141 |
+
return history
|
142 |
+
|
143 |
+
def call_search(purpose, task, history, directory, action_input):
|
144 |
+
logging.info(f"CALLING SEARCH: {action_input}")
|
145 |
+
try:
|
146 |
+
|
147 |
+
if "http" in action_input:
|
148 |
+
if "<" in action_input:
|
149 |
+
action_input = action_input.strip("<")
|
150 |
+
if ">" in action_input:
|
151 |
+
action_input = action_input.strip(">")
|
152 |
+
|
153 |
+
response = i_s(action_input)
|
154 |
+
#response = google(search_return)
|
155 |
+
logging.info(f"Search Result: {response}")
|
156 |
+
history += "observation: search result is: {}\n".format(response)
|
157 |
+
else:
|
158 |
+
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
|
159 |
+
except Exception as e:
|
160 |
+
history += "observation: {}'\n".format(e)
|
161 |
+
return "MAIN", None, history, task
|
162 |
+
|
163 |
+
def call_main(purpose, task, history, directory, action_input):
|
164 |
+
logging.info(f"CALLING MAIN: {action_input}")
|
165 |
+
resp = run_gpt(
|
166 |
+
ACTION_PROMPT,
|
167 |
+
stop_tokens=["observation:", "task:", "action:","thought:"],
|
168 |
+
max_tokens=32000,
|
169 |
+
purpose=purpose,
|
170 |
+
task=task,
|
171 |
+
history=history,
|
172 |
+
)
|
173 |
+
lines = resp.strip().strip("\n").split("\n")
|
174 |
+
for line in lines:
|
175 |
+
if line == "":
|
176 |
+
continue
|
177 |
+
if line.startswith("thought: "):
|
178 |
+
history += "{}\n".format(line)
|
179 |
+
logging.info(f"Thought: {line}")
|
180 |
+
elif line.startswith("action: "):
|
181 |
+
|
182 |
+
action_name, action_input = parse_action(line)
|
183 |
+
logging.info(f"Action: {action_name} - {action_input}")
|
184 |
+
history += "{}\n".format(line)
|
185 |
+
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
186 |
+
task = "END"
|
187 |
+
return action_name, action_input, history, task
|
188 |
+
else:
|
189 |
+
return action_name, action_input, history, task
|
190 |
+
else:
|
191 |
+
history += "{}\n".format(line)
|
192 |
+
logging.info(f"Other Output: {line}")
|
193 |
+
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
194 |
+
|
195 |
+
#return action_name, action_input, history, task
|
196 |
+
#assert False, "unknown action: {}".format(line)
|
197 |
+
return "MAIN", None, history, task
|
198 |
+
|
199 |
+
|
200 |
+
def call_set_task(purpose, task, history, directory, action_input):
|
201 |
+
logging.info(f"CALLING SET_TASK: {action_input}")
|
202 |
+
task = run_gpt(
|
203 |
+
TASK_PROMPT,
|
204 |
+
stop_tokens=[],
|
205 |
+
max_tokens=64,
|
206 |
+
purpose=purpose,
|
207 |
+
task=task,
|
208 |
+
history=history,
|
209 |
+
).strip("\n")
|
210 |
+
history += "observation: task has been updated to: {}\n".format(task)
|
211 |
+
return "MAIN", None, history, task
|
212 |
+
|
213 |
+
def end_fn(purpose, task, history, directory, action_input):
|
214 |
+
logging.info(f"CALLING END_FN: {action_input}")
|
215 |
+
task = "END"
|
216 |
+
return "COMPLETE", "COMPLETE", history, task
|
217 |
+
|
218 |
+
NAME_TO_FUNC = {
|
219 |
+
"MAIN": call_main,
|
220 |
+
"UPDATE-TASK": call_set_task,
|
221 |
+
"SEARCH": call_search,
|
222 |
+
"COMPLETE": end_fn,
|
223 |
+
|
224 |
+
}
|
225 |
+
|
226 |
+
def run_action(purpose, task, history, directory, action_name, action_input):
|
227 |
+
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
|
228 |
+
try:
|
229 |
+
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
230 |
+
action_name="COMPLETE"
|
231 |
+
task="END"
|
232 |
+
return action_name, "COMPLETE", history, task
|
233 |
+
|
234 |
+
# compress the history when it is long
|
235 |
+
if len(history.split("\n")) > MAX_HISTORY:
|
236 |
+
logging.info("COMPRESSING HISTORY")
|
237 |
+
history = compress_history(purpose, task, history, directory)
|
238 |
+
if not action_name in NAME_TO_FUNC:
|
239 |
+
action_name="MAIN"
|
240 |
+
if action_name == "" or action_name == None:
|
241 |
+
action_name="MAIN"
|
242 |
+
assert action_name in NAME_TO_FUNC
|
243 |
+
|
244 |
+
logging.info(f"RUN: {action_name} - {action_input}")
|
245 |
+
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
246 |
+
except Exception as e:
|
247 |
+
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
248 |
+
logging.error(f"Error in run_action: {e}")
|
249 |
+
return "MAIN", None, history, task
|
250 |
+
|
251 |
+
def run(purpose,history):
|
252 |
+
|
253 |
+
#print(purpose)
|
254 |
+
#print(hist)
|
255 |
+
task=None
|
256 |
+
directory="./"
|
257 |
+
if history:
|
258 |
+
history=str(history).strip("[]")
|
259 |
+
if not history:
|
260 |
+
history = ""
|
261 |
+
|
262 |
+
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
263 |
+
action_input = None
|
264 |
+
while True:
|
265 |
+
logging.info(f"---")
|
266 |
+
logging.info(f"Purpose: {purpose}")
|
267 |
+
logging.info(f"Task: {task}")
|
268 |
+
logging.info(f"---")
|
269 |
+
logging.info(f"History: {history}")
|
270 |
+
logging.info(f"---")
|
271 |
+
|
272 |
+
action_name, action_input, history, task = run_action(
|
273 |
+
purpose,
|
274 |
+
task,
|
275 |
+
history,
|
276 |
+
directory,
|
277 |
+
action_name,
|
278 |
+
action_input,
|
279 |
+
)
|
280 |
+
yield (history)
|
281 |
+
#yield ("",[(purpose,history)])
|
282 |
+
if task == "END":
|
283 |
+
return (history)
|
284 |
+
#return ("", [(purpose,history)])
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
################################################
|
289 |
+
|
290 |
+
def format_prompt(message, history, max_history_turns=5):
|
291 |
+
prompt = "<s>"
|
292 |
+
# Keep only the last 'max_history_turns' turns
|
293 |
+
for user_prompt, bot_response in history[-max_history_turns:]:
|
294 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
295 |
+
prompt += f" {bot_response}</s> "
|
296 |
+
prompt += f"[INST] {message} [/INST]"
|
297 |
+
return prompt
|
298 |
+
agents =[
|
299 |
+
"WEB_DEV",
|
300 |
+
"AI_SYSTEM_PROMPT",
|
301 |
+
"PYTHON_CODE_DEV"
|
302 |
+
]
|
303 |
+
def generate(
|
304 |
+
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
305 |
+
):
|
306 |
+
seed = random.randint(1,1111111111111111)
|
307 |
+
|
308 |
+
# Correct the line:
|
309 |
+
if agent_name == "WEB_DEV":
|
310 |
+
agent = "You are a helpful AI assistant. You are a web developer."
|
311 |
+
if agent_name == "AI_SYSTEM_PROMPT":
|
312 |
+
agent = "You are a helpful AI assistant. You are an AI system."
|
313 |
+
if agent_name == "PYTHON_CODE_DEV":
|
314 |
+
agent = "You are a helpful AI assistant. You are a Python code developer."
|
315 |
+
system_prompt = agent
|
316 |
+
temperature = float(temperature)
|
317 |
+
if temperature < 1e-2:
|
318 |
+
temperature = 1e-2
|
319 |
+
top_p = float(top_p)
|
320 |
+
|
321 |
+
# Add the system prompt to the beginning of the prompt
|
322 |
+
formatted_prompt = f"{system_prompt} {prompt}"
|
323 |
+
|
324 |
+
# Use 'prompt' here instead of 'message'
|
325 |
+
formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history
|
326 |
+
logging.info(f"Formatted Prompt: {formatted_prompt}")
|
327 |
+
stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False)
|
328 |
+
resp = ""
|
329 |
+
for response in stream:
|
330 |
+
resp += response.token.text
|
331 |
+
|
332 |
+
if VERBOSE:
|
333 |
+
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
334 |
+
return resp
|
335 |
+
|
336 |
+
|
337 |
+
def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
|
338 |
+
"""Generates text in chunks to avoid token limit errors."""
|
339 |
+
sentences = nltk.sent_tokenize(input_text)
|
340 |
+
generated_text = []
|
341 |
+
generator = pipeline('text-generation', model=model)
|
342 |
+
|
343 |
+
for sentence in sentences:
|
344 |
+
# Tokenize the sentence and check if it's within the limit
|
345 |
+
tokens = generator.tokenizer(sentence).input_ids
|
346 |
+
if len(tokens) + max_tokens_to_generate <= 32768:
|
347 |
+
# Generate text for this chunk
|
348 |
+
response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
|
349 |
+
generated_text.append(response[0]['generated_text'])
|
350 |
+
else:
|
351 |
+
# Handle cases where the sentence is too long
|
352 |
+
# You could split the sentence further or skip it
|
353 |
+
print(f"Sentence too long: {sentence}")
|
354 |
+
|
355 |
+
return ''.join(generated_text)
|
356 |
+
|
357 |
+
formatted_prompt = format_prompt(prompt, history, max_history_turns=5) # Truncated history
|
358 |
+
logging.info(f"Formatted Prompt: {formatted_prompt}")
|
359 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
360 |
+
output = ""
|
361 |
+
|
362 |
+
for response in stream:
|
363 |
+
output += response.token.text
|
364 |
+
yield output
|
365 |
+
return output
|
366 |
+
|
367 |
+
|
368 |
+
additional_inputs=[
|
369 |
+
gr.Dropdown(
|
370 |
+
label="Agents",
|
371 |
+
choices=[s for s in agents],
|
372 |
+
value=agents[0],
|
373 |
+
interactive=True,
|
374 |
+
),
|
375 |
+
gr.Textbox(
|
376 |
+
label="System Prompt",
|
377 |
+
max_lines=1,
|
378 |
+
interactive=True,
|
379 |
+
),
|
380 |
+
gr.Slider(
|
381 |
+
label="Temperature",
|
382 |
+
value=0.9,
|
383 |
+
minimum=0.0,
|
384 |
+
maximum=1.0,
|
385 |
+
step=0.05,
|
386 |
+
interactive=True,
|
387 |
+
info="Higher values produce more diverse outputs",
|
388 |
+
),
|
389 |
+
|
390 |
+
gr.Slider(
|
391 |
+
label="Max new tokens",
|
392 |
+
value=1048*10,
|
393 |
+
minimum=0,
|
394 |
+
maximum=1048*10,
|
395 |
+
step=64,
|
396 |
+
interactive=True,
|
397 |
+
info="The maximum numbers of new tokens",
|
398 |
+
),
|
399 |
+
gr.Slider(
|
400 |
+
label="Top-p (nucleus sampling)",
|
401 |
+
value=0.90,
|
402 |
+
minimum=0.0,
|
403 |
+
maximum=1,
|
404 |
+
step=0.05,
|
405 |
+
interactive=True,
|
406 |
+
info="Higher values sample more low-probability tokens",
|
407 |
+
),
|
408 |
+
gr.Slider(
|
409 |
+
label="Repetition penalty",
|
410 |
+
value=1.2,
|
411 |
+
minimum=1.0,
|
412 |
+
maximum=2.0,
|
413 |
+
step=0.05,
|
414 |
+
interactive=True,
|
415 |
+
info="Penalize repeated tokens",
|
416 |
+
),
|
417 |
+
|
418 |
+
|
419 |
+
]
|
420 |
+
|
421 |
+
examples = [
|
422 |
+
["Help me set up TypeScript configurations and integrate ts-loader in my existing React project.",
|
423 |
+
"Update Webpack Configurations",
|
424 |
+
"Install Dependencies",
|
425 |
+
"Configure Ts-Loader",
|
426 |
+
"TypeChecking Rules Setup",
|
427 |
+
"React Specific Settings",
|
428 |
+
"Compilation Options",
|
429 |
+
"Test Runner Configuration"],
|
430 |
+
|
431 |
+
["Guide me through building a serverless microservice using AWS Lambda and API Gateway, connecting to DynamoDB for storage.",
|
432 |
+
"Set Up AWS Account",
|
433 |
+
"Create Lambda Function",
|
434 |
+
"APIGateway Integration",
|
435 |
+
"Define DynamoDB Table Scheme",
|
436 |
+
"Connect Service To DB",
|
437 |
+
"Add Authentication Layers",
|
438 |
+
"Monitor Metrics and Set Alarms"],
|
439 |
+
|
440 |
+
["Migrate our current monolithic PHP application towards containerized services using Docker and Kubernetes for scalability.",
|
441 |
+
"Architectural Restructuring Plan",
|
442 |
+
"Containerisation Process With Docker",
|
443 |
+
"Service Orchestration With Kubernetes",
|
444 |
+
"Load Balancing Strategies",
|
445 |
+
"Persistent Storage Solutions",
|
446 |
+
"Network Policies Enforcement",
|
447 |
+
"Continuous Integration / Continuous Delivery"],
|
448 |
+
|
449 |
+
["Provide guidance on integrating WebAssembly modules compiled from C++ source files into an ongoing web project.",
|
450 |
+
"Toolchain Selection (Emscripten vs. LLVM)",
|
451 |
+
"Setting Up Compiler Environment",
|
452 |
+
".cpp Source Preparation",
|
453 |
+
"Module Building Approach",
|
454 |
+
"Memory Management Considerations",
|
455 |
+
"Performance Tradeoffs",
|
456 |
+
"Seamless Web Assembly Embedding"]
|
457 |
+
]
|
458 |
+
|
459 |
+
def parse_action(line):
|
460 |
+
action_name, action_input = line.strip("action: ").split("=")
|
461 |
+
action_input = action_input.strip()
|
462 |
+
return action_name, action_input
|
463 |
+
|
464 |
+
def get_file_tree(path):
|
465 |
+
"""
|
466 |
+
Recursively explores a directory and returns a nested dictionary representing its file tree.
|
467 |
+
"""
|
468 |
+
tree = {}
|
469 |
+
for item in os.listdir(path):
|
470 |
+
item_path = os.path.join(path, item)
|
471 |
+
if os.path.isdir(item_path):
|
472 |
+
tree[item] = get_file_tree(item_path)
|
473 |
+
else:
|
474 |
+
tree[item] = None
|
475 |
+
return tree
|
476 |
+
|
477 |
+
def display_file_tree(tree, indent=0):
|
478 |
+
"""
|
479 |
+
Prints a formatted representation of the file tree.
|
480 |
+
"""
|
481 |
+
for name, subtree in tree.items():
|
482 |
+
print(f"{' ' * indent}{name}")
|
483 |
+
if subtree is not None:
|
484 |
+
display_file_tree(subtree, indent + 1)
|
485 |
+
|
486 |
+
def project_explorer(path):
|
487 |
+
"""
|
488 |
+
Displays the file tree of a given path in a Streamlit app.
|
489 |
+
"""
|
490 |
+
tree = get_file_tree(path)
|
491 |
+
tree_str = json.dumps(tree, indent=4) # Convert the tree to a string for display
|
492 |
+
return tree_str
|
493 |
+
|
494 |
+
def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model):
|
495 |
+
# Your existing code here
|
496 |
+
|
497 |
+
try:
|
498 |
+
# Pass 'message' as 'prompt'
|
499 |
+
response = ''.join(generate(
|
500 |
+
model=model,
|
501 |
+
prompt=message, # Use 'prompt' here
|
502 |
+
history=history,
|
503 |
+
agent_name=agent_name,
|
504 |
+
sys_prompt=sys_prompt,
|
505 |
+
temperature=temperature,
|
506 |
+
max_new_tokens=max_new_tokens,
|
507 |
+
top_p=top_p,
|
508 |
+
repetition_penalty=repetition_penalty,
|
509 |
+
))
|
510 |
+
except TypeError:
|
511 |
+
# ... (rest of the exception handling)
|
512 |
+
|
513 |
+
response_parts = []
|
514 |
+
for part in generate(
|
515 |
+
model=model,
|
516 |
+
prompt=message, # Use 'prompt' here
|
517 |
+
history=history,
|
518 |
+
agent_name=agent_name,
|
519 |
+
sys_prompt=sys_prompt,
|
520 |
+
temperature=temperature,
|
521 |
+
max_new_tokens=max_new_tokens,
|
522 |
+
top_p=top_p,
|
523 |
+
repetition_penalty=repetition_penalty,
|
524 |
+
):
|
525 |
+
if isinstance(part, str):
|
526 |
+
response_parts.append(part)
|
527 |
+
elif isinstance(part, dict) and 'content' in part:
|
528 |
+
response_parts.append(part['content'])
|
529 |
+
|
530 |
+
response = ''.join(response_parts)
|
531 |
+
history.append((message, response))
|
532 |
+
return history
|
533 |
+
|
534 |
+
history.append((message, response))
|
535 |
+
return history
|
536 |
+
|
537 |
def main():
|
538 |
+
with gr.Blocks() as demo:
|
539 |
+
gr.Markdown("## FragMixt")
|
540 |
+
gr.Markdown("### Agents w/ Agents")
|
541 |
+
|
542 |
+
# Chat Interface
|
543 |
+
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
|
544 |
+
#chatbot.load(examples)
|
545 |
+
|
546 |
+
# Input Components
|
547 |
+
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
|
548 |
+
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
|
549 |
+
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
|
550 |
+
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
|
551 |
+
temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
|
552 |
+
max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
|
553 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
|
554 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
555 |
+
model_input = gr.Textbox(label="Model", value="mistralai/Mixtral-8x7B-Instruct-v0.1", visible=False)
|
556 |
+
|
557 |
+
# Button to submit the message
|
558 |
+
submit_button = gr.Button(value="Send")
|
559 |
+
|
560 |
+
# Project Explorer Tab
|
561 |
+
with gr.Tab("Project Explorer"):
|
562 |
+
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
|
563 |
+
explore_button = gr.Button(value="Explore")
|
564 |
+
project_output = gr.Textbox(label="File Tree", lines=20)
|
565 |
+
|
566 |
+
# Chat App Logic Tab
|
567 |
+
with gr.Tab("Chat App"):
|
568 |
+
history = gr.State([])
|
569 |
+
for example in examples:
|
570 |
+
gr.Button(value=example[0]).click(lambda: chat_app_logic(example[0], history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model=model_input), outputs=chatbot)
|
571 |
+
|
572 |
+
# Connect components to the chat app logic
|
573 |
+
submit_button.click(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)
|
574 |
+
message.submit(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)
|
575 |
+
|
576 |
+
# Connect components to the project explorer
|
577 |
+
explore_button.click(project_explorer, inputs=project_path, outputs=project_output)
|
578 |
+
|
579 |
+
demo.launch(show_api=True)
|
580 |
|
581 |
if __name__ == "__main__":
|
582 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|