Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import subprocess
|
|
3 |
import random
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import gradio as gr
|
6 |
-
from safe_search import safe_search
|
7 |
from i_search import google
|
8 |
from i_search import i_search as i_s
|
9 |
from agent import (
|
@@ -18,6 +18,9 @@ from agent import (
|
|
18 |
READ_PROMPT,
|
19 |
TASK_PROMPT,
|
20 |
UNDERSTAND_TEST_RESULTS_PROMPT,
|
|
|
|
|
|
|
21 |
)
|
22 |
from utils import parse_action, parse_file_content, read_python_module_structure
|
23 |
from datetime import datetime
|
@@ -32,35 +35,44 @@ client = InferenceClient(
|
|
32 |
|
33 |
VERBOSE = True
|
34 |
MAX_HISTORY = 100
|
35 |
-
#MODEL = "gpt-3.5-turbo" # "gpt-4"
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def run_gpt(
|
46 |
prompt_template,
|
47 |
stop_tokens,
|
48 |
max_tokens,
|
49 |
purpose,
|
|
|
|
|
|
|
|
|
50 |
**prompt_kwargs,
|
51 |
):
|
52 |
-
seed = random.randint(1,1111111111111111)
|
53 |
-
print (seed)
|
54 |
generate_kwargs = dict(
|
55 |
-
temperature=
|
56 |
-
max_new_tokens=
|
57 |
-
top_p=
|
58 |
-
repetition_penalty=
|
59 |
do_sample=True,
|
60 |
seed=seed,
|
61 |
)
|
62 |
|
63 |
-
|
64 |
content = PREFIX.format(
|
65 |
date_time_str=date_time_str,
|
66 |
purpose=purpose,
|
@@ -68,12 +80,10 @@ def run_gpt(
|
|
68 |
) + prompt_template.format(**prompt_kwargs)
|
69 |
if VERBOSE:
|
70 |
print(LOG_PROMPT.format(content))
|
71 |
-
|
72 |
-
|
73 |
-
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
74 |
-
#formatted_prompt = format_prompt(f'{content}', history)
|
75 |
|
76 |
-
|
|
|
|
|
77 |
resp = ""
|
78 |
for response in stream:
|
79 |
resp += response.token.text
|
@@ -90,22 +100,23 @@ def compress_history(purpose, task, history, directory):
|
|
90 |
purpose=purpose,
|
91 |
task=task,
|
92 |
history=history,
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
history = "observation: {}\n".format(resp)
|
95 |
return history
|
96 |
-
|
97 |
def call_search(purpose, task, history, directory, action_input):
|
98 |
print("CALLING SEARCH")
|
99 |
try:
|
100 |
-
|
101 |
if "http" in action_input:
|
102 |
if "<" in action_input:
|
103 |
action_input = action_input.strip("<")
|
104 |
if ">" in action_input:
|
105 |
action_input = action_input.strip(">")
|
106 |
-
|
107 |
response = i_s(action_input)
|
108 |
-
#response = google(search_return)
|
109 |
print(response)
|
110 |
history += "observation: search result is: {}\n".format(response)
|
111 |
else:
|
@@ -117,11 +128,15 @@ def call_search(purpose, task, history, directory, action_input):
|
|
117 |
def call_main(purpose, task, history, directory, action_input):
|
118 |
resp = run_gpt(
|
119 |
ACTION_PROMPT,
|
120 |
-
stop_tokens=["observation:", "task:", "action:","thought:"],
|
121 |
max_tokens=2096,
|
122 |
purpose=purpose,
|
123 |
task=task,
|
124 |
history=history,
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
lines = resp.strip().strip("\n").split("\n")
|
127 |
for line in lines:
|
@@ -130,11 +145,9 @@ def call_main(purpose, task, history, directory, action_input):
|
|
130 |
if line.startswith("thought: "):
|
131 |
history += "{}\n".format(line)
|
132 |
elif line.startswith("action: "):
|
133 |
-
|
134 |
action_name, action_input = parse_action(line)
|
135 |
-
print
|
136 |
-
print
|
137 |
-
|
138 |
history += "{}\n".format(line)
|
139 |
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
140 |
task = "END"
|
@@ -143,10 +156,6 @@ def call_main(purpose, task, history, directory, action_input):
|
|
143 |
return action_name, action_input, history, task
|
144 |
else:
|
145 |
history += "{}\n".format(line)
|
146 |
-
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
147 |
-
|
148 |
-
#return action_name, action_input, history, task
|
149 |
-
#assert False, "unknown action: {}".format(line)
|
150 |
return "MAIN", None, history, task
|
151 |
|
152 |
def call_set_task(purpose, task, history, directory, action_input):
|
@@ -157,6 +166,10 @@ def call_set_task(purpose, task, history, directory, action_input):
|
|
157 |
purpose=purpose,
|
158 |
task=task,
|
159 |
history=history,
|
|
|
|
|
|
|
|
|
160 |
).strip("\n")
|
161 |
history += "observation: task has been updated to: {}\n".format(task)
|
162 |
return "MAIN", None, history, task
|
@@ -170,46 +183,41 @@ NAME_TO_FUNC = {
|
|
170 |
"UPDATE-TASK": call_set_task,
|
171 |
"SEARCH": call_search,
|
172 |
"COMPLETE": end_fn,
|
173 |
-
|
174 |
}
|
175 |
|
176 |
def run_action(purpose, task, history, directory, action_name, action_input):
|
177 |
-
print(f
|
178 |
try:
|
179 |
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
180 |
-
action_name="COMPLETE"
|
181 |
-
task="END"
|
182 |
return action_name, "COMPLETE", history, task
|
183 |
-
|
184 |
# compress the history when it is long
|
185 |
if len(history.split("\n")) > MAX_HISTORY:
|
186 |
if VERBOSE:
|
187 |
print("COMPRESSING HISTORY")
|
188 |
history = compress_history(purpose, task, history, directory)
|
189 |
if not action_name in NAME_TO_FUNC:
|
190 |
-
action_name="MAIN"
|
191 |
if action_name == "" or action_name == None:
|
192 |
-
action_name="MAIN"
|
193 |
assert action_name in NAME_TO_FUNC
|
194 |
-
|
195 |
print("RUN: ", action_name, action_input)
|
196 |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
197 |
except Exception as e:
|
198 |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
199 |
-
|
200 |
return "MAIN", None, history, task
|
201 |
|
202 |
-
def run(purpose,history):
|
203 |
-
|
204 |
-
|
205 |
-
#print(hist)
|
206 |
-
task=None
|
207 |
-
directory="./"
|
208 |
if history:
|
209 |
-
history=str(history).strip("[]")
|
210 |
if not history:
|
211 |
history = ""
|
212 |
-
|
213 |
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
214 |
action_input = None
|
215 |
while True:
|
@@ -231,139 +239,97 @@ def run(purpose,history):
|
|
231 |
action_input,
|
232 |
)
|
233 |
yield (history)
|
234 |
-
#yield ("",[(purpose,history)])
|
235 |
if task == "END":
|
236 |
return (history)
|
237 |
-
#return ("", [(purpose,history)])
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
def format_prompt(message, history):
|
242 |
-
prompt = "<s>"
|
243 |
-
for user_prompt, bot_response in history:
|
244 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
245 |
-
prompt += f" {bot_response}</s> "
|
246 |
-
prompt += f"[INST] {message} [/INST]"
|
247 |
-
return prompt
|
248 |
-
agents =[
|
249 |
-
"WEB_DEV",
|
250 |
-
"AI_SYSTEM_PROMPT",
|
251 |
-
"PYTHON_CODE_DEV"
|
252 |
-
]
|
253 |
-
def generate(
|
254 |
-
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
255 |
-
):
|
256 |
-
seed = random.randint(1,1111111111111111)
|
257 |
-
|
258 |
-
agent=prompts.WEB_DEV
|
259 |
-
if agent_name == "WEB_DEV":
|
260 |
-
agent = prompts.WEB_DEV
|
261 |
-
if agent_name == "AI_SYSTEM_PROMPT":
|
262 |
-
agent = prompts.AI_SYSTEM_PROMPT
|
263 |
-
if agent_name == "PYTHON_CODE_DEV":
|
264 |
-
agent = prompts.PYTHON_CODE_DEV
|
265 |
-
system_prompt=agent
|
266 |
-
temperature = float(temperature)
|
267 |
-
if temperature < 1e-2:
|
268 |
-
temperature = 1e-2
|
269 |
-
top_p = float(top_p)
|
270 |
-
|
271 |
-
generate_kwargs = dict(
|
272 |
-
temperature=temperature,
|
273 |
-
max_new_tokens=max_new_tokens,
|
274 |
-
top_p=top_p,
|
275 |
-
repetition_penalty=repetition_penalty,
|
276 |
-
do_sample=True,
|
277 |
-
seed=seed,
|
278 |
-
)
|
279 |
-
|
280 |
-
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
281 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
282 |
-
output = ""
|
283 |
-
|
284 |
-
for response in stream:
|
285 |
-
output += response.token.text
|
286 |
-
yield output
|
287 |
-
return output
|
288 |
-
|
289 |
-
additional_inputs=[
|
290 |
-
gr.Dropdown(
|
291 |
-
label="Agents",
|
292 |
-
choices=[s for s in agents],
|
293 |
-
value=agents[0],
|
294 |
-
interactive=True,
|
295 |
-
),
|
296 |
-
gr.Textbox(
|
297 |
-
label="System Prompt",
|
298 |
-
max_lines=1,
|
299 |
-
interactive=True,
|
300 |
-
),
|
301 |
-
gr.Slider(
|
302 |
-
label="Temperature",
|
303 |
-
value=0.9,
|
304 |
-
minimum=0.0,
|
305 |
-
maximum=1.0,
|
306 |
-
step=0.05,
|
307 |
-
interactive=True,
|
308 |
-
info="Higher values produce more diverse outputs",
|
309 |
-
),
|
310 |
-
|
311 |
-
gr.Slider(
|
312 |
-
label="Max new tokens",
|
313 |
-
value=1048*10,
|
314 |
-
minimum=0,
|
315 |
-
maximum=1048*10,
|
316 |
-
step=64,
|
317 |
-
interactive=True,
|
318 |
-
info="The maximum numbers of new tokens",
|
319 |
-
),
|
320 |
-
gr.Slider(
|
321 |
-
label="Top-p (nucleus sampling)",
|
322 |
-
value=0.90,
|
323 |
-
minimum=0.0,
|
324 |
-
maximum=1,
|
325 |
-
step=0.05,
|
326 |
-
interactive=True,
|
327 |
-
info="Higher values sample more low-probability tokens",
|
328 |
-
),
|
329 |
-
gr.Slider(
|
330 |
-
label="Repetition penalty",
|
331 |
-
value=1.2,
|
332 |
-
minimum=1.0,
|
333 |
-
maximum=2.0,
|
334 |
-
step=0.05,
|
335 |
-
interactive=True,
|
336 |
-
info="Penalize repeated tokens",
|
337 |
-
),
|
338 |
-
|
339 |
-
]
|
340 |
-
|
341 |
-
examples=[["What are the biggest news stories today?", None, None, None, None, None, ],
|
342 |
-
["When is the next full moon?", None, None, None, None, None, ],
|
343 |
-
["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
|
344 |
-
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
|
345 |
-
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
|
346 |
-
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
|
347 |
-
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
|
348 |
-
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
|
349 |
-
]
|
350 |
-
|
351 |
-
def process_input(user_input, history, chatbot):
|
352 |
"""Processes user input and updates the chatbot."""
|
353 |
purpose = "General"
|
354 |
history = history + [(user_input, "")]
|
355 |
chatbot.append(user_input, "")
|
356 |
|
357 |
-
for response in run(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
chatbot.append("", response)
|
359 |
yield chatbot
|
360 |
|
361 |
with gr.Blocks() as iface:
|
362 |
-
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel")
|
363 |
-
msg = gr.Textbox(label="Enter your message")
|
364 |
with gr.Row():
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
iface.launch()
|
|
|
3 |
import random
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import gradio as gr
|
6 |
+
from safe_search import safe_search # You need to implement this
|
7 |
from i_search import google
|
8 |
from i_search import i_search as i_s
|
9 |
from agent import (
|
|
|
18 |
READ_PROMPT,
|
19 |
TASK_PROMPT,
|
20 |
UNDERSTAND_TEST_RESULTS_PROMPT,
|
21 |
+
WEB_DEV,
|
22 |
+
AI_SYSTEM_PROMPT,
|
23 |
+
PYTHON_CODE_DEV,
|
24 |
)
|
25 |
from utils import parse_action, parse_file_content, read_python_module_structure
|
26 |
from datetime import datetime
|
|
|
35 |
|
36 |
VERBOSE = True
|
37 |
MAX_HISTORY = 100
|
|
|
38 |
|
39 |
+
# Default values for inputs
|
40 |
+
DEFAULT_AGENT = "WEB_DEV"
|
41 |
+
DEFAULT_SYSTEM_PROMPT = ""
|
42 |
+
DEFAULT_TEMPERATURE = 0.9
|
43 |
+
DEFAULT_MAX_TOKENS = 256
|
44 |
+
DEFAULT_TOP_P = 0.95
|
45 |
+
DEFAULT_REPETITION_PENALTY = 1.0
|
46 |
+
|
47 |
+
def format_prompt(message, history, system_prompt):
|
48 |
+
prompt = "<s>"
|
49 |
+
prompt += f"[INST] {system_prompt}, {message} [/INST]"
|
50 |
+
for user_prompt, bot_response in history:
|
51 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
52 |
+
prompt += f" {bot_response}</s> "
|
53 |
+
return prompt
|
54 |
|
55 |
def run_gpt(
|
56 |
prompt_template,
|
57 |
stop_tokens,
|
58 |
max_tokens,
|
59 |
purpose,
|
60 |
+
temperature,
|
61 |
+
top_p,
|
62 |
+
repetition_penalty,
|
63 |
+
system_prompt,
|
64 |
**prompt_kwargs,
|
65 |
):
|
66 |
+
seed = random.randint(1, 1111111111111111)
|
|
|
67 |
generate_kwargs = dict(
|
68 |
+
temperature=temperature,
|
69 |
+
max_new_tokens=max_tokens,
|
70 |
+
top_p=top_p,
|
71 |
+
repetition_penalty=repetition_penalty,
|
72 |
do_sample=True,
|
73 |
seed=seed,
|
74 |
)
|
75 |
|
|
|
76 |
content = PREFIX.format(
|
77 |
date_time_str=date_time_str,
|
78 |
purpose=purpose,
|
|
|
80 |
) + prompt_template.format(**prompt_kwargs)
|
81 |
if VERBOSE:
|
82 |
print(LOG_PROMPT.format(content))
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
formatted_prompt = format_prompt(content, prompt_kwargs.get("history", []), system_prompt)
|
85 |
+
|
86 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
87 |
resp = ""
|
88 |
for response in stream:
|
89 |
resp += response.token.text
|
|
|
100 |
purpose=purpose,
|
101 |
task=task,
|
102 |
history=history,
|
103 |
+
temperature=DEFAULT_TEMPERATURE,
|
104 |
+
top_p=DEFAULT_TOP_P,
|
105 |
+
repetition_penalty=DEFAULT_REPETITION_PENALTY,
|
106 |
+
system_prompt=DEFAULT_SYSTEM_PROMPT,
|
107 |
)
|
108 |
history = "observation: {}\n".format(resp)
|
109 |
return history
|
110 |
+
|
111 |
def call_search(purpose, task, history, directory, action_input):
|
112 |
print("CALLING SEARCH")
|
113 |
try:
|
|
|
114 |
if "http" in action_input:
|
115 |
if "<" in action_input:
|
116 |
action_input = action_input.strip("<")
|
117 |
if ">" in action_input:
|
118 |
action_input = action_input.strip(">")
|
|
|
119 |
response = i_s(action_input)
|
|
|
120 |
print(response)
|
121 |
history += "observation: search result is: {}\n".format(response)
|
122 |
else:
|
|
|
128 |
def call_main(purpose, task, history, directory, action_input):
|
129 |
resp = run_gpt(
|
130 |
ACTION_PROMPT,
|
131 |
+
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
132 |
max_tokens=2096,
|
133 |
purpose=purpose,
|
134 |
task=task,
|
135 |
history=history,
|
136 |
+
temperature=DEFAULT_TEMPERATURE,
|
137 |
+
top_p=DEFAULT_TOP_P,
|
138 |
+
repetition_penalty=DEFAULT_REPETITION_PENALTY,
|
139 |
+
system_prompt=DEFAULT_SYSTEM_PROMPT,
|
140 |
)
|
141 |
lines = resp.strip().strip("\n").split("\n")
|
142 |
for line in lines:
|
|
|
145 |
if line.startswith("thought: "):
|
146 |
history += "{}\n".format(line)
|
147 |
elif line.startswith("action: "):
|
|
|
148 |
action_name, action_input = parse_action(line)
|
149 |
+
print(f"ACTION_NAME :: {action_name}")
|
150 |
+
print(f"ACTION_INPUT :: {action_input}")
|
|
|
151 |
history += "{}\n".format(line)
|
152 |
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
153 |
task = "END"
|
|
|
156 |
return action_name, action_input, history, task
|
157 |
else:
|
158 |
history += "{}\n".format(line)
|
|
|
|
|
|
|
|
|
159 |
return "MAIN", None, history, task
|
160 |
|
161 |
def call_set_task(purpose, task, history, directory, action_input):
|
|
|
166 |
purpose=purpose,
|
167 |
task=task,
|
168 |
history=history,
|
169 |
+
temperature=DEFAULT_TEMPERATURE,
|
170 |
+
top_p=DEFAULT_TOP_P,
|
171 |
+
repetition_penalty=DEFAULT_REPETITION_PENALTY,
|
172 |
+
system_prompt=DEFAULT_SYSTEM_PROMPT,
|
173 |
).strip("\n")
|
174 |
history += "observation: task has been updated to: {}\n".format(task)
|
175 |
return "MAIN", None, history, task
|
|
|
183 |
"UPDATE-TASK": call_set_task,
|
184 |
"SEARCH": call_search,
|
185 |
"COMPLETE": end_fn,
|
|
|
186 |
}
|
187 |
|
188 |
def run_action(purpose, task, history, directory, action_name, action_input):
|
189 |
+
print(f"action_name::{action_name}")
|
190 |
try:
|
191 |
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
192 |
+
action_name = "COMPLETE"
|
193 |
+
task = "END"
|
194 |
return action_name, "COMPLETE", history, task
|
195 |
+
|
196 |
# compress the history when it is long
|
197 |
if len(history.split("\n")) > MAX_HISTORY:
|
198 |
if VERBOSE:
|
199 |
print("COMPRESSING HISTORY")
|
200 |
history = compress_history(purpose, task, history, directory)
|
201 |
if not action_name in NAME_TO_FUNC:
|
202 |
+
action_name = "MAIN"
|
203 |
if action_name == "" or action_name == None:
|
204 |
+
action_name = "MAIN"
|
205 |
assert action_name in NAME_TO_FUNC
|
206 |
+
|
207 |
print("RUN: ", action_name, action_input)
|
208 |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
209 |
except Exception as e:
|
210 |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
|
|
211 |
return "MAIN", None, history, task
|
212 |
|
213 |
+
def run(purpose, history, agent_name=DEFAULT_AGENT, system_prompt=DEFAULT_SYSTEM_PROMPT, temperature=DEFAULT_TEMPERATURE, max_tokens=DEFAULT_MAX_TOKENS, top_p=DEFAULT_TOP_P, repetition_penalty=DEFAULT_REPETITION_PENALTY):
|
214 |
+
task = None
|
215 |
+
directory = "./"
|
|
|
|
|
|
|
216 |
if history:
|
217 |
+
history = str(history).strip("[]")
|
218 |
if not history:
|
219 |
history = ""
|
220 |
+
|
221 |
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
222 |
action_input = None
|
223 |
while True:
|
|
|
239 |
action_input,
|
240 |
)
|
241 |
yield (history)
|
|
|
242 |
if task == "END":
|
243 |
return (history)
|
|
|
244 |
|
245 |
+
def process_input(user_input, history, chatbot, agent_name, system_prompt, temperature, max_tokens, top_p, repetition_penalty):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
"""Processes user input and updates the chatbot."""
|
247 |
purpose = "General"
|
248 |
history = history + [(user_input, "")]
|
249 |
chatbot.append(user_input, "")
|
250 |
|
251 |
+
for response in run(
|
252 |
+
purpose,
|
253 |
+
history,
|
254 |
+
agent_name=agent_name,
|
255 |
+
system_prompt=system_prompt,
|
256 |
+
temperature=temperature,
|
257 |
+
max_tokens=max_tokens,
|
258 |
+
top_p=top_p,
|
259 |
+
repetition_penalty=repetition_penalty,
|
260 |
+
):
|
261 |
chatbot.append("", response)
|
262 |
yield chatbot
|
263 |
|
264 |
with gr.Blocks() as iface:
|
|
|
|
|
265 |
with gr.Row():
|
266 |
+
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel")
|
267 |
+
with gr.Column():
|
268 |
+
msg = gr.Textbox(label="Enter your message")
|
269 |
+
with gr.Row():
|
270 |
+
submit_b = gr.Button("Submit")
|
271 |
+
clear = gr.ClearButton([msg, chatbot])
|
272 |
+
|
273 |
+
# Input fields for configuration
|
274 |
+
with gr.Column():
|
275 |
+
agent_dropdown = gr.Dropdown(
|
276 |
+
label="Agent",
|
277 |
+
choices=[s for s in ["WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV"]],
|
278 |
+
value=DEFAULT_AGENT,
|
279 |
+
interactive=True,
|
280 |
+
)
|
281 |
+
system_prompt_textbox = gr.Textbox(
|
282 |
+
label="System Prompt",
|
283 |
+
value=DEFAULT_SYSTEM_PROMPT,
|
284 |
+
interactive=True,
|
285 |
+
)
|
286 |
+
temperature_slider = gr.Slider(
|
287 |
+
label="Temperature",
|
288 |
+
value=DEFAULT_TEMPERATURE,
|
289 |
+
minimum=0.0,
|
290 |
+
maximum=1.0,
|
291 |
+
step=0.05,
|
292 |
+
interactive=True,
|
293 |
+
info="Higher values produce more diverse outputs",
|
294 |
+
)
|
295 |
+
max_tokens_slider = gr.Slider(
|
296 |
+
label="Max new tokens",
|
297 |
+
value=DEFAULT_MAX_TOKENS,
|
298 |
+
minimum=0,
|
299 |
+
maximum=1048 * 10,
|
300 |
+
step=64,
|
301 |
+
interactive=True,
|
302 |
+
info="The maximum numbers of new tokens",
|
303 |
+
)
|
304 |
+
top_p_slider = gr.Slider(
|
305 |
+
label="Top-p (nucleus sampling)",
|
306 |
+
value=DEFAULT_TOP_P,
|
307 |
+
minimum=0.0,
|
308 |
+
maximum=1,
|
309 |
+
step=0.05,
|
310 |
+
interactive=True,
|
311 |
+
info="Higher values sample more low-probability tokens",
|
312 |
+
)
|
313 |
+
repetition_penalty_slider = gr.Slider(
|
314 |
+
label="Repetition penalty",
|
315 |
+
value=DEFAULT_REPETITION_PENALTY,
|
316 |
+
minimum=1.0,
|
317 |
+
maximum=2.0,
|
318 |
+
step=0.05,
|
319 |
+
interactive=True,
|
320 |
+
info="Penalize repeated tokens",
|
321 |
+
)
|
322 |
+
|
323 |
+
# Connect input fields to the processing function
|
324 |
+
submit_b.click(
|
325 |
+
process_input,
|
326 |
+
[msg, chatbot, chatbot, agent_dropdown, system_prompt_textbox, temperature_slider, max_tokens_slider, top_p_slider, repetition_penalty_slider],
|
327 |
+
chatbot,
|
328 |
+
)
|
329 |
+
msg.submit(
|
330 |
+
process_input,
|
331 |
+
[msg, chatbot, chatbot, agent_dropdown, system_prompt_textbox, temperature_slider, max_tokens_slider, top_p_slider, repetition_penalty_slider],
|
332 |
+
chatbot,
|
333 |
+
)
|
334 |
+
|
335 |
iface.launch()
|