Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,308 +1,48 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
"PYTHON_CODE_DEV": {
|
36 |
-
"description": "Expert in Python code development.",
|
37 |
-
"system_prompt": "You are a helpful AI assistant specializing in Python code development. You can generate Python code, debug code, and answer questions about Python.",
|
38 |
-
},
|
39 |
-
"DATA_SCIENCE": {
|
40 |
-
"description": "Expert in data science tasks.",
|
41 |
-
"system_prompt": "You are a helpful AI assistant specializing in data science. You can analyze data, build models, and provide insights.",
|
42 |
-
},
|
43 |
-
"GAME_DEV": {
|
44 |
-
"description": "Expert in game development tasks.",
|
45 |
-
"system_prompt": "You are a helpful AI assistant specializing in game development. You can generate game logic, design levels, and provide guidance on game engines.",
|
46 |
-
},
|
47 |
-
# Add more agents as needed
|
48 |
-
}
|
49 |
-
|
50 |
-
# --- Function to format prompt with history ---
|
51 |
-
def format_prompt(message, history, agent_name, system_prompt):
|
52 |
-
prompt = " "
|
53 |
-
for user_prompt, bot_response in history[-MAX_HISTORY_TURNS:]:
|
54 |
-
prompt += f"[INST] {user_prompt} [/ "
|
55 |
-
prompt += f" {bot_response}"
|
56 |
-
prompt += f"[INST] {message} [/ "
|
57 |
-
|
58 |
-
# Add system prompt if provided
|
59 |
-
if system_prompt:
|
60 |
-
prompt = f"{system_prompt}\n\n{prompt}"
|
61 |
-
|
62 |
-
return prompt
|
63 |
-
|
64 |
-
# --- Function to run the LLM with specified parameters ---
|
65 |
-
def run_llm(
|
66 |
-
prompt,
|
67 |
-
stop_sequences,
|
68 |
-
max_tokens,
|
69 |
-
temperature=0.7,
|
70 |
-
top_p=0.8,
|
71 |
-
repetition_penalty=1.5,
|
72 |
-
):
|
73 |
-
seed = random.randint(1, 1111111111111111)
|
74 |
-
logging.info(f"Seed: {seed}") # Log the seed
|
75 |
-
|
76 |
-
client = InferenceClient(MODEL_NAME)
|
77 |
-
resp = client.text_generation(
|
78 |
-
prompt,
|
79 |
-
max_new_tokens=max_tokens,
|
80 |
-
stop_sequences=stop_sequences,
|
81 |
-
temperature=temperature,
|
82 |
-
top_p=top_p,
|
83 |
-
repetition_penalty=repetition_penalty,
|
84 |
-
)
|
85 |
-
if VERBOSE:
|
86 |
-
logging.info(f"Prompt: {prompt}")
|
87 |
-
logging.info(f"Response: {resp}")
|
88 |
-
return resp
|
89 |
-
|
90 |
-
# --- Function to handle agent interactions ---
|
91 |
-
def agent_interaction(
|
92 |
-
purpose,
|
93 |
-
message,
|
94 |
-
agent_name,
|
95 |
-
system_prompt,
|
96 |
-
history,
|
97 |
-
temperature,
|
98 |
-
max_new_tokens,
|
99 |
-
top_p,
|
100 |
-
repetition_penalty,
|
101 |
-
):
|
102 |
-
# Format the prompt with history
|
103 |
-
prompt = format_prompt(message, history, agent_name, system_prompt)
|
104 |
-
|
105 |
-
# Run the LLM
|
106 |
response = run_llm(
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
def parse_action(line):
|
121 |
-
"""Parse the action line to get the action name and input."""
|
122 |
-
parts = line.split(":", 1)
|
123 |
-
if len(parts) == 2:
|
124 |
-
action_name = parts[0].replace("action", "").strip()
|
125 |
-
action_input = parts[1].strip()
|
126 |
-
else:
|
127 |
-
action_name = parts[0].replace("action", "").strip()
|
128 |
-
action_input = ""
|
129 |
-
return action_name, action_input
|
130 |
-
|
131 |
-
# --- Function to execute actions based on agent's response ---
|
132 |
-
def execute_action(purpose, task, history, action_name, action_input):
|
133 |
-
logging.info(f"Executing Action: {action_name} - {action_input}")
|
134 |
-
|
135 |
-
if action_name == "SEARCH":
|
136 |
-
try:
|
137 |
-
if "http" in action_input:
|
138 |
-
if "<" in action_input:
|
139 |
-
action_input = action_input.strip("<")
|
140 |
-
if ">" in action_input:
|
141 |
-
action_input = action_input.strip(">")
|
142 |
-
response = i_s(action_input)
|
143 |
-
logging.info(f"Search Result: {response}")
|
144 |
-
history += "observation: search result is: {}\n".format(response)
|
145 |
-
else:
|
146 |
-
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
|
147 |
-
except Exception as e:
|
148 |
-
history += "observation: {}\n".format(e)
|
149 |
-
return "MAIN", None, history, task
|
150 |
-
|
151 |
-
elif action_name == "COMPLETE":
|
152 |
-
task = "END"
|
153 |
-
return "COMPLETE", "COMPLETE", history, task
|
154 |
-
|
155 |
-
elif action_name == "GENERATE_CODE":
|
156 |
-
# Simulate OpenAI API response for code generation (using Hugging Face model)
|
157 |
-
# ... (Implement code generation logic using a suitable Hugging Face model)
|
158 |
-
# Example:
|
159 |
-
# code = generate_code_from_huggingface_model(action_input) # Replace with actual code generation function
|
160 |
-
# history += f"observation: Here's the code: {code}\n"
|
161 |
-
# return "MAIN", None, history, task
|
162 |
-
pass # Placeholder for code generation logic
|
163 |
-
|
164 |
-
elif action_name == "RUN_CODE":
|
165 |
-
# Simulate OpenAI API response for code execution (using Hugging Face model)
|
166 |
-
# ... (Implement code execution logic using a suitable Hugging Face model)
|
167 |
-
# Example:
|
168 |
-
# output = execute_code_from_huggingface_model(action_input) # Replace with actual code execution function
|
169 |
-
# history += f"observation: Code output: {output}\n"
|
170 |
-
# return "MAIN", None, history, task
|
171 |
-
pass # Placeholder for code execution logic
|
172 |
-
|
173 |
-
else:
|
174 |
-
# Default action: "MAIN"
|
175 |
-
return "MAIN", action_input, history, task
|
176 |
-
|
177 |
-
# --- Function to handle the main loop of agent interaction ---
|
178 |
-
def run_agent(purpose, history):
|
179 |
-
task = None
|
180 |
-
directory = "./"
|
181 |
-
if history:
|
182 |
-
history = str(history).strip("[]")
|
183 |
-
if not history:
|
184 |
-
history = ""
|
185 |
-
|
186 |
-
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
187 |
-
action_input = None
|
188 |
-
|
189 |
-
while True:
|
190 |
-
logging.info(f"---")
|
191 |
-
logging.info(f"Purpose: {purpose}")
|
192 |
-
logging.info(f"Task: {task}")
|
193 |
-
logging.info(f"---")
|
194 |
-
logging.info(f"History: {history}")
|
195 |
-
logging.info(f"---")
|
196 |
-
|
197 |
-
# Get the agent's next action
|
198 |
-
prompt = f"""
|
199 |
-
You are a helpful AI assistant. You are working on the task: {task}
|
200 |
-
Your current history is:
|
201 |
-
{history}
|
202 |
-
What is your next thought?
|
203 |
-
thought:
|
204 |
-
What is your next action?
|
205 |
-
action:
|
206 |
-
"""
|
207 |
-
|
208 |
-
response = run_llm(
|
209 |
-
prompt,
|
210 |
-
stop_sequences=["observation:", "task:", "action:", "thought:"],
|
211 |
-
max_tokens=32000,
|
212 |
-
)
|
213 |
-
|
214 |
-
# Parse the action
|
215 |
-
lines = response.strip().strip("\n").split("\n")
|
216 |
-
for line in lines:
|
217 |
-
if line.startswith("thought: "):
|
218 |
-
history += "{}\n".format(line)
|
219 |
-
logging.info(f"Thought: {line}")
|
220 |
-
elif line.startswith("action: "):
|
221 |
-
action_name, action_input = parse_action(line)
|
222 |
-
logging.info(f"Action: {action_name} - {action_input}")
|
223 |
-
history += "{}\n".format(line)
|
224 |
-
break
|
225 |
-
|
226 |
-
# Execute the action
|
227 |
-
action_name, action_input, history, task = execute_action(
|
228 |
-
purpose, task, history, action_name, action_input
|
229 |
-
)
|
230 |
-
|
231 |
-
yield (history)
|
232 |
-
if task == "END":
|
233 |
-
return (history)
|
234 |
-
|
235 |
-
# --- Gradio Interface ---
|
236 |
-
def main():
|
237 |
-
with gr.Blocks() as demo:
|
238 |
-
gr.Markdown("## FragMixt - No-Code Development Powerhouse")
|
239 |
-
gr.Markdown("### Your AI-Powered Development Companion")
|
240 |
-
|
241 |
-
# Chat Interface
|
242 |
-
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
|
243 |
-
|
244 |
-
# Input Components
|
245 |
-
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
|
246 |
-
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
|
247 |
-
agent_name = gr.Dropdown(label="Agents", choices=list(agents.keys()), value=list(agents.keys())[0], interactive=True)
|
248 |
-
system_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
|
249 |
-
temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
|
250 |
-
max_new_tokens = gr.Slider(label="Max new tokens", value=1048 * 10, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
|
251 |
-
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
|
252 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
253 |
-
|
254 |
-
# Button to submit the message
|
255 |
-
submit_button = gr.Button(value="Send")
|
256 |
-
|
257 |
-
# Project Explorer Tab (Placeholder)
|
258 |
-
with gr.Tab("Project Explorer"):
|
259 |
-
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
|
260 |
-
explore_button = gr.Button(value="Explore")
|
261 |
-
project_output = gr.Textbox(label="File Tree", lines=20)
|
262 |
-
|
263 |
-
# Chat App Logic Tab
|
264 |
-
with gr.Tab("Chat App"):
|
265 |
-
history = gr.State([])
|
266 |
-
examples = [
|
267 |
-
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
|
268 |
-
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
|
269 |
-
]
|
270 |
-
|
271 |
-
def chat(purpose, message, agent_name, system_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history):
|
272 |
-
# Get the system prompt for the selected agent
|
273 |
-
system_prompt = agents.get(agent_name, {}).get("system_prompt", "")
|
274 |
-
|
275 |
-
# Run the agent interaction
|
276 |
-
history, history_output = agent_interaction(
|
277 |
-
purpose,
|
278 |
-
message,
|
279 |
-
agent_name,
|
280 |
-
system_prompt,
|
281 |
-
history,
|
282 |
-
temperature,
|
283 |
-
max_new_tokens,
|
284 |
-
top_p,
|
285 |
-
repetition_penalty,
|
286 |
-
)
|
287 |
-
return history, history_output
|
288 |
-
|
289 |
-
submit_button.click(
|
290 |
-
chat,
|
291 |
-
inputs=[
|
292 |
-
purpose,
|
293 |
-
message,
|
294 |
-
agent_name,
|
295 |
-
system_prompt,
|
296 |
-
temperature,
|
297 |
-
max_new_tokens,
|
298 |
-
top_p,
|
299 |
-
repetition_penalty,
|
300 |
-
history,
|
301 |
-
],
|
302 |
-
outputs=[chatbot, history],
|
303 |
-
)
|
304 |
-
|
305 |
-
demo.launch()
|
306 |
-
|
307 |
-
if __name__ == "__main__":
|
308 |
-
main()
|
|
|
1 |
+
===== Application Startup at 2024-07-13 21:48:51 =====
|
2 |
+
|
3 |
+
Running on local URL: http://0.0.0.0:7860
|
4 |
+
|
5 |
+
To create a public link, set `share=True` in `launch()`.
|
6 |
+
Traceback (most recent call last):
|
7 |
+
File "/usr/local/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 304, in hf_raise_for_status
|
8 |
+
response.raise_for_status()
|
9 |
+
File "/usr/local/lib/python3.10/site-packages/requests/models.py", line 1024, in raise_for_status
|
10 |
+
raise HTTPError(http_error_msg, response=self)
|
11 |
+
requests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1
|
12 |
+
|
13 |
+
The above exception was the direct cause of the following exception:
|
14 |
+
|
15 |
+
Traceback (most recent call last):
|
16 |
+
File "/usr/local/lib/python3.10/site-packages/gradio/queueing.py", line 541, in process_events
|
17 |
+
response = await route_utils.call_process_api(
|
18 |
+
File "/usr/local/lib/python3.10/site-packages/gradio/route_utils.py", line 276, in call_process_api
|
19 |
+
output = await app.get_blocks().process_api(
|
20 |
+
File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 1928, in process_api
|
21 |
+
result = await self.call_function(
|
22 |
+
File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 1514, in call_function
|
23 |
+
prediction = await anyio.to_thread.run_sync(
|
24 |
+
File "/usr/local/lib/python3.10/site-packages/anyio/to_thread.py", line 56, in run_sync
|
25 |
+
return await get_async_backend().run_sync_in_worker_thread(
|
26 |
+
File "/usr/local/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 2177, in run_sync_in_worker_thread
|
27 |
+
return await future
|
28 |
+
File "/usr/local/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 859, in run
|
29 |
+
result = context.run(func, *args)
|
30 |
+
File "/usr/local/lib/python3.10/site-packages/gradio/utils.py", line 833, in wrapper
|
31 |
+
response = f(*args, **kwargs)
|
32 |
+
File "/home/user/app/app.py", line 276, in chat
|
33 |
+
history, history_output = agent_interaction(
|
34 |
+
File "/home/user/app/app.py", line 106, in agent_interaction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
response = run_llm(
|
36 |
+
File "/home/user/app/app.py", line 77, in run_llm
|
37 |
+
resp = client.text_generation(
|
38 |
+
File "/usr/local/lib/python3.10/site-packages/huggingface_hub/inference/_client.py", line 2061, in text_generation
|
39 |
+
raise_text_generation_error(e)
|
40 |
+
File "/usr/local/lib/python3.10/site-packages/huggingface_hub/inference/_common.py", line 460, in raise_text_generation_error
|
41 |
+
raise http_error
|
42 |
+
File "/usr/local/lib/python3.10/site-packages/huggingface_hub/inference/_client.py", line 2032, in text_generation
|
43 |
+
bytes_output = self.post(json=payload, model=model, task="text-generation", stream=stream) # type: ignore
|
44 |
+
File "/usr/local/lib/python3.10/site-packages/huggingface_hub/inference/_client.py", line 273, in post
|
45 |
+
hf_raise_for_status(response)
|
46 |
+
File "/usr/local/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 371, in hf_raise_for_status
|
47 |
+
raise HfHubHTTPError(str(e), response=response) from e
|
48 |
+
huggingface_hub.utils._errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1 (Request ID: 41TZN5nlKL2We1-SnVOGU)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|