acecalisto3 commited on
Commit
a41f9a6
·
verified ·
1 Parent(s): e325ae0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +247 -141
app.py CHANGED
@@ -1,142 +1,248 @@
1
- import os
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
2
- import subprocess= "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
3
- import random
4
- import json'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
5
- from flaskAIAgent:
def init(self, import Flask, render_templateskills):
self.name = name
self.description = description
self.skills = skills
6
- from datetime import datetime
7
- from gradio import Blocks
8
- from safe_search import safe_search
9
- from i_search import google, i_search as i_s
10
- from agent import (
11
- ACTION_PROMPT, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
12
- ADD_PROMPT,I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
13
- COMPRESS_HISTORY_PROMPT,
14
- LOG_PROMPT,
15
- LOG_RESPONSE,
16
- MODIFY_PROMPT,
17
- PREFIX,
18
- SEARCH_QUERY,
19
- READ_PROMPT,
20
- TASK_PROMPT,
21
- UNDERSTAND_TEST_RESULTS_PROMPT,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  )
23
- from utils import parse_action, parse_file_content, read_python_module_structure
24
- from huggingface_hub import cached_download, hf_hub_url
25
- from transformers import InferenceClient
26
-
27
- app = Flask(__name__)
28
-
29
- @appdef generate_code(code_idea):
response = openai.route(
model="/",
messages=[
{"role": "system", "content": "You are an expert software developer."},
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
]
)
generated_code = response.choices[0].message['content'].strip()
st.session_state.current_state['toolbox']['generated_code'] = generated_code
return generated_code
30
- def index():
"""Commits and pushes changes to the Hugging Face repository."""
commands = [
"git add .",
f"git commit -m '{commit_message}'",
"git push"
]
for command in commands:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
st.error(f"Error executing command '{command}': {result.stderr}")
break
31
- return render_template("index.html")
32
-
33
- class App(Blocks):
34
- defst.sidebar.title("Navigation")
app_mode __init__(self):
35
- super()if app_mode == "AI Agent Creator":
# AI Agent Creator
st.__init__()
36
- self.app_state = {"components": []}
37
- self.terminal_history = ""
38
- self.components_registry = {
39
- "Button": {
40
- "properties": {
41
- "label": "Click Me",
42
- "onclick": ""
43
- },
44
- "description":
# Tool Box
st.header("A clickable button",
45
- "code_snippet": "gr.Button(value='{{label}}', variant='primary')"
46
- },
47
- "Text Input": {
48
- "properties": {
49
- "value": "",
50
- "placeholder": "Enter text"
51
- },
52
- "description": "A field for entering text",
53
- "code_snippet": "gr.Textbox(label='{{placeholder}}')"
54
- },
55
- "Image": {
56
- "properties": {
57
- "src": "#",
58
- "alt": "Image"
59
- },
60
- "description": "Displays an image",
61
- "code_snippet": "gr.Image(label='{{alt}}')"
62
- },
63
- "Dropdown": {
64
- "properties": {
65
- "choices": ["Option 1", "Option 2"],
66
- "value": ""
67
- },
68
- "description": "A dropdown menu for selecting options",
69
- "code_snippet": "gr.Dropdown(choices={{choices}}, label='Dropdown')"
70
- }
71
- }
72
- self.nlp_model_names = [
73
- "google/flan-t5-small",
74
- "Qwen/CodeQwen1.5-7B-Chat-GGUF",
75
- "bartowski/Codestral-22B-v0.1-GGUF",
76
- "bartowski/AutoCoder-GGUF"
77
- ]
78
- self.nlp_models = []
79
- self.initialize_nlp_models()
80
-
81
- def initialize_nlp_models(self):
82
- for nlp_model_name in self.nlp_model_names:
83
- try:
84
- cached_download(hf_hub_url(nlp_model_name, revision="main"))
85
- self.nlp_models.append(InferenceClient(nlp_model_name))
86
- except:
87
- self.nlp_models.append(None)
88
-
89
- def get_nlp_response(self, input_text, model_index):
90
- if self.nlp_models[model_index]:
91
- response = self.nlp_models[model_index].text_generation(input_text)
92
- return response.generated_text
93
- else:
94
- return "NLP model not available."
95
-
96
- class Component:
97
- def __init__(self, type, properties=None, id=None):
98
- self.id = id or random.randint(1000, 9999)
99
- self.type = type
100
- self.properties = properties or self.components_registry[type]["properties"].copy()
101
-
102
- def to_dict(self):
103
- return {
104
- "id": self.id,
105
- "type": self.type,
106
- "properties": self.properties,
107
- }
108
-
109
- def render(self):
110
- if self.type == "Dropdown":
111
- self.properties["choices"] = str(self.properties["choices"]).replace("[", "").replace("]", "").replace("'", "")
112
- return self.components_registry[self.type]["code_snippet"].format(**self.properties)
113
-
114
- def update_app_canvas(self):
115
- components_html = "".join([f"<div>Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}</div>" for component in self.app_state["components"]])
116
- return components_html
117
-
118
- def add_componentapp_mode == "Workspace Chat App":
# Workspace Chat App
st.header(self, component_type):
119
- if component_type in self.components_registry:
120
- new_component = self.Component(component_type)
121
- self.app_state["components"].append(new_component.to_dict())
122
- return (
123
- self.update_app_canvas(),
124
- f"System: Added component: {component_type}\n",
125
- )
126
- else:
127
- return None, f"Error: Invalid component type: {component_type}\n"
128
-
129
- def run_terminal_command(self, command, history):
130
- output = ""
131
- try:
132
- process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
133
- output, error = process.communicate()
134
- if error:
135
- output = error
136
- except Exception as e:
137
- output = str(e)
138
- self.terminal_history += f"{command}\n{output.decode('utf-8')}\n"
139
- return self.terminal_history
140
-
141
- if __name__ == "__main__":
142
- app.run(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
2
+ HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
3
+ Global state to manage communication between Tool Box and Workspace Chat App
4
+ if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
5
+ class AIAgent:
def init(self, name, description, skills):
self.name = name
self.description = description
self.skills = skills
6
+
7
+
8
+ def create_agent_prompt(self):
9
+ skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
10
+ agent_prompt = f"""
11
+ As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
12
+ I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
13
+
14
+ def autonomous_build(self, chat_history, workspace_projects):
15
+ """
16
+ Autonomous build logic that continues based on the state of chat history and workspace projects.
17
+ """
18
+ summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
19
+ summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
20
+
21
+ next_step = "Based on the current state, the next logical step is to implement the main application logic."
22
+
23
+ return summary, next_step
24
+ def save_agent_to_file(agent):
"""Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
if not os.path.exists(AGENT_DIRECTORY):
os.makedirs(AGENT_DIRECTORY)
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
with open(config_path, "w") as file:
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
st.session_state.available_agents.append(agent.name)
25
+
26
+ commit_and_push_changes(f"Add agent {agent.name}")
27
+ def load_agent_prompt(agent_name):
"""Loads an agent prompt from a file."""
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
28
+ def create_agent_from_text(name, text):
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
29
+ Chat interface using a selected agent
30
+ def chat_interface_with_agent(input_text, agent_name):
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
31
+
32
+ # Load the GPT-2 model which is compatible with AutoModelForCausalLM
33
+ model_name = "gpt2"
34
+ try:
35
+ model = AutoModelForCausalLM.from_pretrained(model_name)
36
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
37
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
38
+ except EnvironmentError as e:
39
+ return f"Error loading model: {e}"
40
+
41
+ # Combine the agent prompt with user input
42
+ combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
43
+
44
+ # Truncate input text to avoid exceeding the model's maximum length
45
+ max_input_length = 900
46
+ input_ids = tokenizer.encode(combined_input, return_tensors="pt")
47
+ if input_ids.shape[1] > max_input_length:
48
+ input_ids = input_ids[:, :max_input_length]
49
+
50
+ # Generate chatbot response
51
+ outputs = model.generate(
52
+ input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
53
+ )
54
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
55
+ return response
56
+ def workspace_interface(project_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(PROJECT_ROOT):
os.makedirs(PROJECT_ROOT)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {"files": []}
st.session_state.current_state['workspace_chat']['project_name'] = project_name
commit_and_push_changes(f"Create project {project_name}")
return f"Project {project_name} created successfully."
else:
return f"Project {project_name} already exists."
57
+ def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if os.path.exists(project_path):
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]["files"].append(file_name)
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
return f"Code added to {file_name} in project {project_name} successfully."
else:
return f"Project {project_name} does not exist."
58
+ def terminal_interface(command, project_name=None):
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project {project_name} does not exist."
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
return result.stdout
else:
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
return result.stderr
59
+ def code_editor_interface(code):
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.NothingChanged:
formatted_code = code
result = StringIO()
sys.stdout = result
sys.stderr = result
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
sys.stdout = sys.stdout
sys.stderr = sys.stderr
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
st.session_state.current_state['toolbox']['formatted_code'] = formatted_code
st.session_state.current_state['toolbox']['lint_message'] = lint_message
return formatted_code, lint_message
60
+ def summarize_text(text):
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
return summary[0]['summary_text']
61
+ def sentiment_analysis(text):
analyzer = pipeline("sentiment-analysis")
sentiment = analyzer(text)
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
return sentiment[0]
62
+ def translate_code(code, input_language, output_language):
# Define a dictionary to map programming languages to their corresponding file extensions
language_extensions = {
# ignore the specific languages right now, and continue to EOF
}
63
+
64
+ # Add code to handle edge cases such as invalid input and unsupported programming languages
65
+ if input_language not in language_extensions:
66
+ raise ValueError(f"Invalid input language: {input_language}")
67
+ if output_language not in language_extensions:
68
+ raise ValueError(f"Invalid output language: {output_language}")
69
+
70
+ # Use the dictionary to map the input and output languages to their corresponding file extensions
71
+ input_extension = language_extensions[input_language]
72
+ output_extension = language_extensions[output_language]
73
+
74
+ # Translate the code using the OpenAI API
75
+ prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
76
+ response = openai.ChatCompletion.create(
77
+ model="gpt-4",
78
+ messages=[
79
+ {"role": "system", "content": "You are an expert software developer."},
80
+ {"role": "user", "content": prompt}
81
+ ]
82
  )
83
+ translated_code = response.choices[0].message['content'].strip()
84
+
85
+ # Return the translated code
86
+ translated_code = response.choices[0].message['content'].strip()
87
+ st.session_state.current_state['toolbox']['translated_code'] = translated_code
88
+ return translated_code
89
+ def generate_code(code_idea):
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert software developer."},
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
]
)
generated_code = response.choices[0].message['content'].strip()
st.session_state.current_state['toolbox']['generated_code'] = generated_code
return generated_code
90
+ def commit_and_push_changes(commit_message):
"""Commits and pushes changes to the Hugging Face repository."""
commands = [
"git add .",
f"git commit -m '{commit_message}'",
"git push"
]
for command in commands:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
st.error(f"Error executing command '{command}': {result.stderr}")
break
91
+ Streamlit App
92
+ st.title("AI Agent Creator")
93
+ Sidebar navigation
94
+ st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
95
+ if app_mode == "AI Agent Creator":
# AI Agent Creator
st.header("Create an AI Agent from Text")
96
+
97
+ st.subheader("From Text")
98
+ agent_name = st.text_input("Enter agent name:")
99
+ text_input = st.text_area("Enter skills (one per line):")
100
+ if st.button("Create Agent"):
101
+ agent_prompt = create_agent_from_text(agent_name, text_input)
102
+ st.success(f"Agent '{agent_name}' created and saved successfully.")
103
+ st.session_state.available_agents.append(agent_name)
104
+ elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
105
+
106
+ # Chat Interface
107
+ st.subheader("Chat with CodeCraft")
108
+ chat_input = st.text_area("Enter your message:")
109
+ if st.button("Send"):
110
+ if chat_input.startswith("@"):
111
+ agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
112
+ chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
113
+ chat_response = chat_interface_with_agent(chat_input, agent_name)
114
+ else:
115
+ chat_response = chat_interface(chat_input)
116
+ st.session_state.chat_history.append((chat_input, chat_response))
117
+ st.write(f"CodeCraft: {chat_response}")
118
+
119
+ # Terminal Interface
120
+ st.subheader("Terminal")
121
+ terminal_input = st.text_input("Enter a command:")
122
+ if st.button("Run"):
123
+ terminal_output = terminal_interface(terminal_input)
124
+ st.session_state.terminal_history.append((terminal_input, terminal_output))
125
+ st.code(terminal_output, language="bash")
126
+
127
+ # Code Editor Interface
128
+ st.subheader("Code Editor")
129
+ code_editor = st.text_area("Write your code:", height=300)
130
+ if st.button("Format & Lint"):
131
+ formatted_code, lint_message = code_editor_interface(code_editor)
132
+ st.code(formatted_code, language="python")
133
+ st.info(lint_message)
134
+
135
+ # Text Summarization Tool
136
+ st.subheader("Summarize Text")
137
+ text_to_summarize = st.text_area("Enter text to summarize:")
138
+ if st.button("Summarize"):
139
+ summary = summarize_text(text_to_summarize)
140
+ st.write(f"Summary: {summary}")
141
+
142
+ # Sentiment Analysis Tool
143
+ st.subheader("Sentiment Analysis")
144
+ sentiment_text = st.text_area("Enter text for sentiment analysis:")
145
+ if st.button("Analyze Sentiment"):
146
+ sentiment = sentiment_analysis(sentiment_text)
147
+ st.write(f"Sentiment: {sentiment}")
148
+
149
+ # Text Translation Tool (Code Translation)
150
+ st.subheader("Translate Code")
151
+ code_to_translate = st.text_area("Enter code to translate:")
152
+ source_language = st.text_input("Enter source language (e.g. 'Python'):")
153
+ target_language = st.text_input("Enter target language (e.g. 'JavaScript'):")
154
+ if st.button("Translate Code"):
155
+ translated_code = translate_code(code_to_translate, source_language, target_language)
156
+ st.code(translated_code, language=target_language.lower())
157
+
158
+ # Code Generation
159
+ st.subheader("Code Generation")
160
+ code_idea = st.text_input("Enter your code idea:")
161
+ if st.button("Generate Code"):
162
+ generated_code = generate_code(code_idea)
163
+ st.code(generated_code, language="python")
164
+
165
+ # Display Preset Commands
166
+ st.subheader("Preset Commands")
167
+ preset_commands = {
168
+ "Create a new project": "create_project('project_name')",
169
+ "Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
170
+ "Run terminal command": "terminal_interface('command', 'project_name')",
171
+ "Generate code": "generate_code('code_idea')",
172
+ "Summarize text": "summarize_text('text')",
173
+ "Analyze sentiment": "sentiment_analysis('text')",
174
+ "Translate code": "translate_code('code', 'source_language', 'target_language')",
175
+ }
176
+ for command_name, command in preset_commands.items():
177
+ st.write(f"{command_name}: `{command}`")
178
+ elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
179
+
180
+ # Project Workspace Creation
181
+ st.subheader("Create a New Project")
182
+ project_name = st.text_input("Enter project name:")
183
+ if st.button("Create Project"):
184
+ workspace_status = workspace_interface(project_name)
185
+ st.success(workspace_status)
186
+
187
+ # Add Code to Workspace
188
+ st.subheader("Add Code to Workspace")
189
+ code_to_add = st.text_area("Enter code to add to workspace:")
190
+ file_name = st.text_input("Enter file name (e.g. 'app.py'):")
191
+ if st.button("Add Code"):
192
+ add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
193
+ st.success(add_code_status)
194
+
195
+ # Terminal Interface with Project Context
196
+ st.subheader("Terminal (Workspace Context)")
197
+ terminal_input = st.text_input("Enter a command within the workspace:")
198
+ if st.button("Run Command"):
199
+ terminal_output = terminal_interface(terminal_input, project_name)
200
+ st.code(terminal_output, language="bash")
201
+
202
+ # Chat Interface for Guidance
203
+ st.subheader("Chat with CodeCraft for Guidance")
204
+ chat_input = st.text_area("Enter your message for guidance:")
205
+ if st.button("Get Guidance"):
206
+ chat_response = chat_interface(chat_input)
207
+ st.session_state.chat_history.append((chat_input, chat_response))
208
+ st.write(f"CodeCraft: {chat_response}")
209
+
210
+ # Display Chat History
211
+ st.subheader("Chat History")
212
+ for user_input, response in st.session_state.chat_history:
213
+ st.write(f"User: {user_input}")
214
+ st.write(f"CodeCraft: {response}")
215
+
216
+ # Display Terminal History
217
+ st.subheader("Terminal History")
218
+ for command, output in st.session_state.terminal_history:
219
+ st.write(f"Command: {command}")
220
+ st.code(output, language="bash")
221
+
222
+ # Display Projects and Files
223
+ st.subheader("Workspace Projects")
224
+ for project, details in st.session_state.workspace_projects.items():
225
+ st.write(f"Project: {project}")
226
+ for file in details['files']:
227
+ st.write(f" - {file}")
228
+
229
+ # Chat with AI Agents
230
+ st.subheader("Chat with AI Agents")
231
+ selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
232
+ agent_chat_input = st.text_area("Enter your message for the agent:")
233
+ if st.button("Send to Agent"):
234
+ agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
235
+ st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
236
+ st.write(f"{selected_agent}: {agent_chat_response}")
237
+
238
+ # Automate Build Process
239
+ st.subheader("Automate Build Process")
240
+ if st.button("Automate"):
241
+ agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
242
+ summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
243
+ st.write("Autonomous Build Summary:")
244
+ st.write(summary)
245
+ st.write("Next Step:")
246
+ st.write(next_step)
247
+ Display current state for debugging
248
+ st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state.current_state)