Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,330 +1,348 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
import
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
{
|
36 |
-
|
37 |
-
Safe Search: {safe_search}
|
38 |
-
"""
|
39 |
-
|
40 |
-
LOG_PROMPT = """
|
41 |
-
PROMPT: {content}
|
42 |
-
"""
|
43 |
-
|
44 |
-
LOG_RESPONSE = """
|
45 |
-
RESPONSE: {resp}
|
46 |
-
"""
|
47 |
-
|
48 |
-
COMPRESS_HISTORY_PROMPT = """
|
49 |
-
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
|
50 |
-
History:
|
51 |
-
{history}
|
52 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
thought:
|
60 |
-
What is your next action?
|
61 |
-
action:
|
62 |
-
"""
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
task:
|
69 |
-
"""
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
stop_tokens,
|
89 |
-
max_tokens,
|
90 |
-
purpose,
|
91 |
-
**prompt_kwargs,
|
92 |
-
):
|
93 |
-
seed = random.randint(1, 1111111111111111)
|
94 |
-
logging.info(f"Seed: {seed}") # Log the seed
|
95 |
-
|
96 |
-
content = PREFIX.format(
|
97 |
-
date_time_str=date_time_str,
|
98 |
-
purpose=purpose,
|
99 |
-
safe_search=safe_search,
|
100 |
-
) + prompt_template.format(**prompt_kwargs)
|
101 |
-
if VERBOSE:
|
102 |
-
logging.info(LOG_PROMPT.format(content)) # Log the prompt
|
103 |
-
|
104 |
-
resp = client.text_generation(content, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
|
105 |
-
if VERBOSE:
|
106 |
-
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
107 |
-
return resp
|
108 |
-
|
109 |
-
def generate(
|
110 |
-
prompt,
|
111 |
-
history,
|
112 |
-
agent_name=agents[0],
|
113 |
-
sys_prompt="",
|
114 |
-
temperature=0.7,
|
115 |
-
max_new_tokens=2048,
|
116 |
-
top_p=0.8,
|
117 |
-
repetition_penalty=1.5,
|
118 |
-
):
|
119 |
-
content = PREFIX.format(
|
120 |
-
date_time_str=date_time_str,
|
121 |
-
purpose=purpose,
|
122 |
-
safe_search=safe_search,
|
123 |
-
) + prompt
|
124 |
-
if VERBOSE:
|
125 |
-
logging.info(LOG_PROMPT.format(content)) # Log the prompt
|
126 |
-
|
127 |
-
stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens)
|
128 |
-
resp = ""
|
129 |
-
for response in stream:
|
130 |
-
resp += response.token.text
|
131 |
-
|
132 |
-
if VERBOSE:
|
133 |
-
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
134 |
-
return resp
|
135 |
-
|
136 |
-
def compress_history(purpose, task, history, directory):
|
137 |
-
resp = run_gpt(
|
138 |
-
COMPRESS_HISTORY_PROMPT,
|
139 |
-
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
140 |
-
max_tokens=512,
|
141 |
-
purpose=purpose,
|
142 |
-
task=task,
|
143 |
-
history=history,
|
144 |
)
|
145 |
-
|
146 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
try:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
def end_fn(purpose, task, history, directory, action_input):
|
207 |
-
logging.info(f"CALLING END_FN: {action_input}")
|
208 |
-
task = "END"
|
209 |
-
return "COMPLETE", "COMPLETE", history, task
|
210 |
-
|
211 |
-
NAME_TO_FUNC = {
|
212 |
-
"MAIN": call_main,
|
213 |
-
"UPDATE-TASK": call_set_task,
|
214 |
-
"SEARCH": call_search,
|
215 |
-
"COMPLETE": end_fn,
|
216 |
-
}
|
217 |
-
|
218 |
-
def run_action(purpose, task, history, directory, action_name, action_input):
|
219 |
-
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
|
220 |
-
try:
|
221 |
-
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
222 |
-
action_name = "COMPLETE"
|
223 |
-
task = "END"
|
224 |
-
return action_name, "COMPLETE", history, task
|
225 |
-
|
226 |
-
# compress the history when it is long
|
227 |
-
if len(history.split("\n")) > MAX_HISTORY:
|
228 |
-
logging.info("COMPRESSING HISTORY")
|
229 |
-
history = compress_history(purpose, task, history, directory)
|
230 |
-
if action_name not in NAME_TO_FUNC:
|
231 |
-
action_name = "MAIN"
|
232 |
-
if action_name == "" or action_name is None:
|
233 |
-
action_name = "MAIN"
|
234 |
-
assert action_name in NAME_TO_FUNC
|
235 |
-
|
236 |
-
logging.info(f"RUN: {action_name} - {action_input}")
|
237 |
-
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
238 |
-
except Exception as e:
|
239 |
-
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
240 |
-
logging.error(f"Error in run_action: {e}")
|
241 |
-
return "MAIN", None, history, task
|
242 |
-
|
243 |
-
def run(purpose, history):
|
244 |
-
task = None
|
245 |
-
directory = "./"
|
246 |
-
if history:
|
247 |
-
history = str(history).strip("[]")
|
248 |
-
if not history:
|
249 |
-
history = ""
|
250 |
-
|
251 |
-
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
252 |
-
action_input = None
|
253 |
-
while True:
|
254 |
-
logging.info(f"---")
|
255 |
-
logging.info(f"Purpose: {purpose}")
|
256 |
-
logging.info(f"Task: {task}")
|
257 |
-
logging.info(f"---")
|
258 |
-
logging.info(f"History: {history}")
|
259 |
-
logging.info(f"---")
|
260 |
-
|
261 |
-
action_name, action_input, history, task = run_action(
|
262 |
-
purpose,
|
263 |
-
task,
|
264 |
-
history,
|
265 |
-
directory,
|
266 |
-
action_name,
|
267 |
-
action_input,
|
268 |
-
)
|
269 |
-
yield (history)
|
270 |
-
if task == "END":
|
271 |
-
return (history)
|
272 |
-
|
273 |
-
def parse_action(line):
|
274 |
-
"""Parse the action line to get the action name and input."""
|
275 |
-
parts = line.split(":", 1)
|
276 |
-
if len(parts) == 2:
|
277 |
-
action_name = parts[0].replace("action", "").strip()
|
278 |
-
action_input = parts[1].strip()
|
279 |
else:
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModel
|
5 |
+
|
6 |
+
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
7 |
+
PROJECT_ROOT = "projects"
|
8 |
+
AGENT_DIRECTORY = "agents"
|
9 |
+
|
10 |
+
# Global state to manage communication between Tool Box and Workspace Chat App
|
11 |
+
if 'chat_history' not in st.session_state:
|
12 |
+
st.session_state.chat_history = []
|
13 |
+
if 'terminal_history' not in st.session_state:
|
14 |
+
st.session_state.terminal_history = []
|
15 |
+
if 'workspace_projects' not in st.session_state:
|
16 |
+
st.session_state.workspace_projects = {}
|
17 |
+
if 'available_agents' not in st.session_state:
|
18 |
+
st.session_state.available_agents = []
|
19 |
+
if 'current_state' not in st.session_state:
|
20 |
+
st.session_state.current_state = {
|
21 |
+
'toolbox': {},
|
22 |
+
'workspace_chat': {}
|
23 |
+
}
|
24 |
+
|
25 |
+
class AIAgent:
|
26 |
+
def __init__(self, name, description, skills):
|
27 |
+
self.name = name
|
28 |
+
self.description = description
|
29 |
+
self.skills = skills
|
30 |
+
|
31 |
+
def create_agent_prompt(self):
|
32 |
+
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
33 |
+
agent_prompt = f"""
|
34 |
+
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
35 |
+
{skills_str}
|
36 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
"""
|
38 |
+
return agent_prompt
|
39 |
+
|
40 |
+
def autonomous_build(self, chat_history, workspace_projects):
|
41 |
+
"""
|
42 |
+
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
43 |
+
"""
|
44 |
+
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
45 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
46 |
+
|
47 |
+
# Analyze chat history and workspace projects to suggest actions
|
48 |
+
# Example:
|
49 |
+
# - Check if the user has requested to create a new file
|
50 |
+
# - Check if the user has requested to install a package
|
51 |
+
# - Check if the user has requested to run a command
|
52 |
+
# - Check if the user has requested to generate code
|
53 |
+
# - Check if the user has requested to translate code
|
54 |
+
# - Check if the user has requested to summarize text
|
55 |
+
# - Check if the user has requested to analyze sentiment
|
56 |
+
|
57 |
+
# Generate a response based on the analysis
|
58 |
+
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
59 |
+
|
60 |
+
return summary, next_step
|
61 |
+
|
62 |
+
def load_hf_token():
|
63 |
+
return 'YOUR_HF_TOKEN'
|
64 |
+
|
65 |
+
def save_agent_to_file(agent):
|
66 |
+
"""Saves the agent's prompt to a file."""
|
67 |
+
if not os.path.exists(AGENT_DIRECTORY):
|
68 |
+
os.makedirs(AGENT_DIRECTORY)
|
69 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
70 |
+
with open(file_path, "w") as file:
|
71 |
+
file.write(agent.create_agent_prompt())
|
72 |
+
st.session_state.available_agents.append(agent.name)
|
73 |
+
|
74 |
+
def load_agent_prompt(agent_name):
|
75 |
+
"""Loads an agent prompt from a file."""
|
76 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
77 |
+
if os.path.exists(file_path):
|
78 |
+
with open(file_path, "r") as file:
|
79 |
+
agent_prompt = file.read()
|
80 |
+
return agent_prompt
|
81 |
+
else:
|
82 |
+
return None
|
83 |
|
84 |
+
def create_agent_from_text(name, text):
|
85 |
+
skills = text.split('\n')
|
86 |
+
agent = AIAgent(name, "AI agent created from text input.", skills)
|
87 |
+
save_agent_to_file(agent)
|
88 |
+
return agent.create_agent_prompt()
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
def chat_interface_with_agent(input_text, agent_name):
|
91 |
+
agent_prompt = load_agent_prompt(agent_name)
|
92 |
+
if agent_prompt is None:
|
93 |
+
return f"Agent {agent_name} not found."
|
|
|
|
|
94 |
|
95 |
+
model_name = "Bin12345/AutoCoder_S_6.7B"
|
96 |
+
try:
|
97 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=load_hf_token())
|
98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=load_hf_token())
|
99 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
100 |
+
except EnvironmentError as e:
|
101 |
+
return f"Error loading model: {e}"
|
102 |
|
103 |
+
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
104 |
+
|
105 |
+
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
106 |
+
max_input_length = 900
|
107 |
+
if input_ids.shape[1] > max_input_length:
|
108 |
+
input_ids = input_ids[:, :max_input_length]
|
109 |
+
|
110 |
+
outputs = model.generate(
|
111 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
|
112 |
+
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
115 |
+
return response
|
116 |
+
|
117 |
+
# Terminal interface
|
118 |
+
def terminal_interface(command, project_name=None):
|
119 |
+
if project_name:
|
120 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
121 |
+
if not os.path.exists(project_path):
|
122 |
+
return f"Project {project_name} does not exist."
|
123 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
|
124 |
+
else:
|
125 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
126 |
+
return result.stdout
|
127 |
|
128 |
+
# Code editor interface
|
129 |
+
def code_editor_interface(code):
|
130 |
try:
|
131 |
+
formatted_code = black.format_str(code, mode=black.FileMode())
|
132 |
+
except black.NothingChanged:
|
133 |
+
formatted_code = code
|
134 |
+
|
135 |
+
result = StringIO()
|
136 |
+
sys.stdout = result
|
137 |
+
sys.stderr = result
|
138 |
+
|
139 |
+
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
140 |
+
sys.stdout = sys.__stdout__
|
141 |
+
sys.stderr = sys.__stderr__
|
142 |
+
|
143 |
+
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
144 |
+
|
145 |
+
return formatted_code, lint_message
|
146 |
+
|
147 |
+
# Text summarization tool
|
148 |
+
def summarize_text(text):
|
149 |
+
summarizer = pipeline("summarization", model="t5-base", use_auth_token=load_hf_token())
|
150 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
151 |
+
return summary[0]['summary_text']
|
152 |
+
|
153 |
+
# Sentiment analysis tool
|
154 |
+
def sentiment_analysis(text):
|
155 |
+
analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment", use_auth_token=load_hf_token())
|
156 |
+
result = analyzer(text)
|
157 |
+
return result[0]['label']
|
158 |
+
|
159 |
+
# Text translation tool (code translation)
|
160 |
+
def translate_code(code, source_language, target_language):
|
161 |
+
# Use a Hugging Face translation model instead of OpenAI
|
162 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es", use_auth_token=load_hf_token()) # Example: English to Spanish
|
163 |
+
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
164 |
+
return translated_code
|
165 |
+
|
166 |
+
def generate_code(code_idea):
|
167 |
+
# Use a Hugging Face code generation model instead of OpenAI
|
168 |
+
generator = pipeline('text-generation', model='bigcode/starcoder', use_auth_token=load_hf_token())
|
169 |
+
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
|
170 |
+
return generated_code
|
171 |
+
|
172 |
+
def chat_interface(input_text):
|
173 |
+
"""Handles general chat interactions with the user."""
|
174 |
+
# Use a Hugging Face chatbot model or your own logic
|
175 |
+
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", use_auth_token=load_hf_token())
|
176 |
+
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
177 |
+
return response
|
178 |
+
|
179 |
+
# Workspace interface
|
180 |
+
def workspace_interface(project_name):
|
181 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
182 |
+
if not os.path.exists(project_path):
|
183 |
+
os.makedirs(project_path)
|
184 |
+
st.session_state.workspace_projects[project_name] = {'files': []}
|
185 |
+
return f"Project '{project_name}' created successfully."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
else:
|
187 |
+
return f"Project '{project_name}' already exists."
|
188 |
+
|
189 |
+
# Add code to workspace
|
190 |
+
def add_code_to_workspace(project_name, code, file_name):
|
191 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
192 |
+
if not os.path.exists(project_path):
|
193 |
+
return f"Project '{project_name}' does not exist."
|
194 |
+
|
195 |
+
file_path = os.path.join(project_path, file_name)
|
196 |
+
with open(file_path, "w") as file:
|
197 |
+
file.write(code)
|
198 |
+
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
199 |
+
return f"Code added to '{file_name}' in project '{project_name}'."
|
200 |
+
|
201 |
+
# Streamlit App
|
202 |
+
st.title("AI Agent Creator")
|
203 |
+
|
204 |
+
# Sidebar navigation
|
205 |
+
st.sidebar.title("Navigation")
|
206 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
207 |
+
|
208 |
+
if app_mode == "AI Agent Creator":
|
209 |
+
# AI Agent Creator
|
210 |
+
st.header("Create an AI Agent from Text")
|
211 |
+
|
212 |
+
st.subheader("From Text")
|
213 |
+
agent_name = st.text_input("Enter agent name:")
|
214 |
+
text_input = st.text_area("Enter skills (one per line):")
|
215 |
+
if st.button("Create Agent"):
|
216 |
+
agent_prompt = create_agent_from_text(agent_name, text_input)
|
217 |
+
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
218 |
+
st.session_state.available_agents.append(agent_name)
|
219 |
+
|
220 |
+
elif app_mode == "Tool Box":
|
221 |
+
# Tool Box
|
222 |
+
st.header("AI-Powered Tools")
|
223 |
+
|
224 |
+
# Chat Interface
|
225 |
+
st.subheader("Chat with CodeCraft")
|
226 |
+
chat_input = st.text_area("Enter your message:")
|
227 |
+
if st.button("Send"):
|
228 |
+
chat_response = chat_interface(chat_input)
|
229 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
230 |
+
st.write(f"CodeCraft: {chat_response}")
|
231 |
+
|
232 |
+
# Terminal Interface
|
233 |
+
st.subheader("Terminal")
|
234 |
+
terminal_input = st.text_input("Enter a command:")
|
235 |
+
if st.button("Run"):
|
236 |
+
terminal_output = terminal_interface(terminal_input)
|
237 |
+
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
238 |
+
st.code(terminal_output, language="bash")
|
239 |
+
|
240 |
+
# Code Editor Interface
|
241 |
+
st.subheader("Code Editor")
|
242 |
+
code_editor = st.text_area("Write your code:", height=300)
|
243 |
+
if st.button("Format & Lint"):
|
244 |
+
formatted_code, lint_message = code_editor_interface(code_editor)
|
245 |
+
st.code(formatted_code, language="python")
|
246 |
+
st.info(lint_message)
|
247 |
+
|
248 |
+
# Text Summarization Tool
|
249 |
+
st.subheader("Summarize Text")
|
250 |
+
text_to_summarize = st.text_area("Enter text to summarize:")
|
251 |
+
if st.button("Summarize"):
|
252 |
+
summary = summarize_text(text_to_summarize)
|
253 |
+
st.write(f"Summary: {summary}")
|
254 |
+
|
255 |
+
# Sentiment Analysis Tool
|
256 |
+
st.subheader("Sentiment Analysis")
|
257 |
+
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
258 |
+
if st.button("Analyze Sentiment"):
|
259 |
+
sentiment = sentiment_analysis(sentiment_text)
|
260 |
+
st.write(f"Sentiment: {sentiment}")
|
261 |
+
|
262 |
+
# Text Translation Tool (Code Translation)
|
263 |
+
st.subheader("Translate Code")
|
264 |
+
code_to_translate = st.text_area("Enter code to translate:")
|
265 |
+
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
266 |
+
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
|
267 |
+
if st.button("Translate Code"):
|
268 |
+
translated_code = translate_code(code_to_translate, source_language, target_language)
|
269 |
+
st.code(translated_code, language=target_language.lower())
|
270 |
+
|
271 |
+
# Code Generation
|
272 |
+
st.subheader("Code Generation")
|
273 |
+
code_idea = st.text_input("Enter your code idea:")
|
274 |
+
if st.button("Generate Code"):
|
275 |
+
generated_code = generate_code(code_idea)
|
276 |
+
st.code(generated_code, language="python")
|
277 |
+
|
278 |
+
elif app_mode == "Workspace Chat App":
|
279 |
+
# Workspace Chat App
|
280 |
+
st.header("Workspace Chat App")
|
281 |
+
|
282 |
+
# Project Workspace Creation
|
283 |
+
st.subheader("Create a New Project")
|
284 |
+
project_name = st.text_input("Enter project name:")
|
285 |
+
if st.button("Create Project"):
|
286 |
+
workspace_status = workspace_interface(project_name)
|
287 |
+
st.success(workspace_status)
|
288 |
+
|
289 |
+
# Add Code to Workspace
|
290 |
+
st.subheader("Add Code to Workspace")
|
291 |
+
code_to_add = st.text_area("Enter code to add to workspace:")
|
292 |
+
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
293 |
+
if st.button("Add Code"):
|
294 |
+
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
295 |
+
st.success(add_code_status)
|
296 |
+
|
297 |
+
# Terminal Interface with Project Context
|
298 |
+
st.subheader("Terminal (Workspace Context)")
|
299 |
+
terminal_input = st.text_input("Enter a command within the workspace:")
|
300 |
+
if st.button("Run Command"):
|
301 |
+
terminal_output = terminal_interface(terminal_input, project_name)
|
302 |
+
st.code(terminal_output, language="bash")
|
303 |
+
|
304 |
+
# Chat Interface for Guidance
|
305 |
+
st.subheader("Chat with CodeCraft for Guidance")
|
306 |
+
chat_input = st.text_area("Enter your message for guidance:")
|
307 |
+
if st.button("Get Guidance"):
|
308 |
+
chat_response = chat_interface(chat_input)
|
309 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
310 |
+
st.write(f"CodeCraft: {chat_response}")
|
311 |
+
|
312 |
+
# Display Chat History
|
313 |
+
st.subheader("Chat History")
|
314 |
+
for user_input, response in st.session_state.chat_history:
|
315 |
+
st.write(f"User: {user_input}")
|
316 |
+
st.write(f"CodeCraft: {response}")
|
317 |
+
|
318 |
+
# Display Terminal History
|
319 |
+
st.subheader("Terminal History")
|
320 |
+
for command, output in st.session_state.terminal_history:
|
321 |
+
st.write(f"Command: {command}")
|
322 |
+
st.code(output, language="bash")
|
323 |
+
|
324 |
+
# Display Projects and Files
|
325 |
+
st.subheader("Workspace Projects")
|
326 |
+
for project, details in st.session_state.workspace_projects.items():
|
327 |
+
st.write(f"Project: {project}")
|
328 |
+
for file in details['files']:
|
329 |
+
st.write(f" - {file}")
|
330 |
+
|
331 |
+
# Chat with AI Agents
|
332 |
+
st.subheader("Chat with AI Agents")
|
333 |
+
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
334 |
+
agent_chat_input = st.text_area("Enter your message for the agent:")
|
335 |
+
if st.button("Send to Agent"):
|
336 |
+
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
337 |
+
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
338 |
+
st.write(f"{selected_agent}: {agent_chat_response}")
|
339 |
+
|
340 |
+
# Automate Build Process
|
341 |
+
st.subheader("Automate Build Process")
|
342 |
+
if st.button("Automate"):
|
343 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
344 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
|
345 |
+
st.write("Autonomous Build Summary:")
|
346 |
+
st.write(summary)
|
347 |
+
st.write("Next Step:")
|
348 |
+
st.write(next_step)
|