import os import subprocess import random from huggingface_hub import InferenceClient import gradio as gr from safe_search import safe_search from i_search import google from i_search import i_search as i_s from datetime import datetime import logging import json import nltk from transformers import pipeline # Ensure NLTK data is downloaded nltk.download('punkt') now = datetime.now() date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) # --- Set up logging --- logging.basicConfig( filename="app.log", # Name of the log file level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.) format="%(asctime)s - %(levelname)s - %(message)s", ) agents = [ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV" ] VERBOSE = True MAX_HISTORY = 5 PREFIX = """ {date_time_str} Purpose: {purpose} Safe Search: {safe_search} """ LOG_PROMPT = """ PROMPT: {content} """ LOG_RESPONSE = """ RESPONSE: {resp} """ COMPRESS_HISTORY_PROMPT = """ You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens. History: {history} """ ACTION_PROMPT = """ You are a helpful AI assistant. You are working on the task: {task} Your current history is: {history} What is your next thought? thought: What is your next action? action: """ TASK_PROMPT = """ You are a helpful AI assistant. Your current history is: {history} What is the next task? task: """ UNDERSTAND_TEST_RESULTS_PROMPT = """ You are a helpful AI assistant. The test results are: {test_results} What do you want to know about the test results? thought: """ def format_prompt(message, history, max_history_turns=5): prompt = "" # Keep only the last 'max_history_turns' turns for user_prompt, bot_response in history[-max_history_turns:]: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt( prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs, ): seed = random.randint(1,1111111111111111) logging.info(f"Seed: {seed}") # Log the seed content = PREFIX.format( date_time_str=date_time_str, purpose=purpose, safe_search=safe_search, ) + prompt_template.format(**prompt_kwargs) if VERBOSE: logging.info(LOG_PROMPT.format(content)) # Log the prompt resp = client.text_generation(content, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5) if VERBOSE: logging.info(LOG_RESPONSE.format(resp=resp)) # Log the response return resp def generate( prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.7, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.5, model="mistralai/Mixtral-8x7B-Instruct-v0.1" ): seed = random.randint(1,1111111111111111) if agent_name == "WEB_DEV": agent = "You are a helpful AI assistant. You are a web developer." elif agent_name == "AI_SYSTEM_PROMPT": agent = "You are a helpful AI assistant. You are an AI system." elif agent_name == "PYTHON_CODE_DEV": agent = "You are a helpful AI assistant. You are a Python code developer." else: agent = "You are a helpful AI assistant." system_prompt = agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) formatted_prompt = f"{system_prompt} {prompt}" formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history logging.info(f"Formatted Prompt: {formatted_prompt}") stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False) resp = "" for response in stream: resp += response.token.text if VERBOSE: logging.info(LOG_RESPONSE.format(resp=resp)) # Log the response return resp def compress_history(purpose, task, history, directory): resp = run_gpt( COMPRESS_HISTORY_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=512, purpose=purpose, task=task, history=history, ) history = "observation: {}\n".format(resp) return history def call_search(purpose, task, history, directory, action_input): logging.info(f"CALLING SEARCH: {action_input}") try: if "http" in action_input: if "<" in action_input: action_input = action_input.strip("<") if ">" in action_input: action_input = action_input.strip(">") response = i_s(action_input) logging.info(f"Search Result: {response}") history += "observation: search result is: {}\n".format(response) else: history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n" except Exception as e: history += "observation: {}'\n".format(e) return "MAIN", None, history, task def call_main(purpose, task, history, directory, action_input): logging.info(f"CALLING MAIN: {action_input}") resp = run_gpt( ACTION_PROMPT, stop_tokens=["observation:", "task:", "action:","thought:"], max_tokens=32000, purpose=purpose, task=task, history=history, ) lines = resp.strip().strip("\n").split("\n") for line in lines: if line == "": continue if line.startswith("thought: "): history += "{}\n".format(line) logging.info(f"Thought: {line}") elif line.startswith("action: "): action_name, action_input = parse_action(line) logging.info(f"Action: {action_name} - {action_input}") history += "{}\n".format(line) if "COMPLETE" in action_name or "COMPLETE" in action_input: task = "END" return action_name, action_input, history, task else: return action_name, action_input, history, task else: history += "{}\n".format(line) logging.info(f"Other Output: {line}") return "MAIN", None, history, task def call_set_task(purpose, task, history, directory, action_input): logging.info(f"CALLING SET_TASK: {action_input}") task = run_gpt( TASK_PROMPT, stop_tokens=[], max_tokens=64, purpose=purpose, task=task, history=history, ).strip("\n") history += "observation: task has been updated to: {}\n".format(task) return "MAIN", None, history, task def end_fn(purpose, task, history, directory, action_input): logging.info(f"CALLING END_FN: {action_input}") task = "END" return "COMPLETE", "COMPLETE", history, task NAME_TO_FUNC = { "MAIN": call_main, "UPDATE-TASK": call_set_task, "SEARCH": call_search, "COMPLETE": end_fn, } def run_action(purpose, task, history, directory, action_name, action_input): logging.info(f"RUNNING ACTION: {action_name} - {action_input}") try: if "RESPONSE" in action_name or "COMPLETE" in action_name: action_name="COMPLETE" task="END" return action_name, "COMPLETE", history, task # compress the history when it is long if len(history.split("\n")) > MAX_HISTORY: logging.info("COMPRESSING HISTORY") history = compress_history(purpose, task, history, directory) if not action_name in NAME_TO_FUNC: action_name="MAIN" if action_name == "" or action_name == None: action_name="MAIN" assert action_name in NAME_TO_FUNC logging.info(f"RUN: {action_name} - {action_input}") return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) except Exception as e: history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n" logging.error(f"Error in run_action: {e}") return "MAIN", None, history, task def run(purpose, history): task = None directory = "./" if history: history = str(history).strip("[]") if not history: history = "" action_name = "UPDATE-TASK" if task is None else "MAIN" action_input = None while True: logging.info(f"---") logging.info(f"Purpose: {purpose}") logging.info(f"Task: {task}") logging.info(f"---") logging.info(f"History: {history}") logging.info(f"---") action_name, action_input, history, task = run_action( purpose, task, history, directory, action_name, action_input, ) yield (history) if task == "END": return (history) def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate): """Generates text in chunks to avoid token limit errors.""" sentences = nltk.sent_tokenize(input_text) generated_text = [] generator = pipeline('text-generation', model=model) for sentence in sentences: # Tokenize the sentence and check if it's within the limit tokens = generator.tokenizer(sentence).input_ids if len(tokens) + max_tokens_to_generate <= 32768: # Generate text for this chunk response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters) generated_text.append(response[0]['generated_text']) else: # Handle cases where the sentence is too long print(f"Sentence too long: {sentence}") return ''.join(generated_text) # Gradio Interface def gradio_interface(purpose, history): history = json.loads(history) if history else [] result = run(purpose, history) return next(result) iface = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(lines=2, placeholder="Enter the purpose here..."), gr.Textbox(lines=10, placeholder="Enter the history here (JSON format)...") ], outputs="text", title="AI Assistant", description="An AI assistant that helps with various tasks." ) if __name__ == "__main__": iface.launch()