import os import subprocess import random import time from typing import Dict, List, Tuple from datetime import datetime import gradio as gr from huggingface_hub import InferenceClient, cached_download from safe_search import safe_search from i_search import google, i_search as i_s # --- Configuration --- VERBOSE = True # Enable verbose logging MAX_HISTORY = 5 # Maximum history turns to keep MAX_TOKENS = 2048 # Maximum tokens for LLM responses TEMPERATURE = 0.7 # Temperature for LLM responses TOP_P = 0.8 # Top-p (nucleus sampling) for LLM responses REPETITION_PENALTY = 1.5 # Repetition penalty for LLM responses MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Name of the LLM model API_KEY = "YOUR_API_KEY" # Replace with your actual Hugging Face API key # --- Logging Setup --- logging.basicConfig( filename="app.log", # Name of the log file level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.) format="%(asctime)s - %(levelname)s - %(message)s", ) # --- Agents --- agents = [ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV", "DATA_SCIENCE", "UI_UX_DESIGN", ] # --- Prompts --- PREFIX = """ {date_time_str} Purpose: {purpose} Safe Search: {safe_search} """ LOG_PROMPT = """ PROMPT: {content} """ LOG_RESPONSE = """ RESPONSE: {resp} """ COMPRESS_HISTORY_PROMPT = """ You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens. History: {history} """ ACTION_PROMPT = """ You are a helpful AI assistant. You are working on the task: {task} Your current history is: {history} What is your next thought? thought: What is your next action? action: """ TASK_PROMPT = """ You are a helpful AI assistant. Your current history is: {history} What is the next task? task: """ UNDERSTAND_TEST_RESULTS_PROMPT = """ You are a helpful AI assistant. The test results are: {test_results} What do you want to know about the test results? thought: """ # --- Functions --- def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str: """Formats the prompt for the LLM, including the message and relevant history.""" prompt = " " # Keep only the last 'max_history_turns' turns for user_prompt, bot_response in history[-max_history_turns:]: prompt += f"[INST] {user_prompt} [/ " prompt += f" {bot_response}" prompt += f"[INST] {message} [/ " return prompt def run_llm( prompt_template: str, stop_tokens: List[str], purpose: str, **prompt_kwargs: Dict ) -> str: """Runs the LLM with the given prompt and parameters.""" seed = random.randint(1, 1111111111111111) logging.info(f"Seed: {seed}") # Log the seed content = PREFIX.format( date_time_str=date_time_str, purpose=purpose, safe_search=safe_search, ) + prompt_template.format(**prompt_kwargs) if VERBOSE: logging.info(LOG_PROMPT.format(content)) # Log the prompt resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY) if VERBOSE: logging.info(LOG_RESPONSE.format(resp)) # Log the response return resp def generate( prompt: str, history: List[Tuple[str, str]], agent_name: str = agents[0], sys_prompt: str = "", temperature: float = TEMPERATURE, max_new_tokens: int = MAX_TOKENS, top_p: float = TOP_P, repetition_penalty: float = REPETITION_PENALTY, ) -> str: """Generates text using the LLM.""" content = PREFIX.format( date_time_str=date_time_str, purpose=purpose, safe_search=safe_search, ) + prompt_template.format(**prompt_kwargs) if VERBOSE: logging.info(LOG_PROMPT.format(content)) # Log the prompt stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens) resp = "" for response in stream: resp += response.token.text if VERBOSE: logging.info(LOG_RESPONSE.format(resp)) # Log the response return resp def compress_history(purpose: str, task: str, history: List[Tuple[str, str]], directory: str) -> str: """Compresses the history into a shorter summary.""" resp = run_llm( COMPRESS_HISTORY_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], purpose=purpose, task=task, history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history), ) history = "observation: {}\n".format(resp) return history def call_search(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: """Performs a search based on the action input.""" logging.info(f"CALLING SEARCH: {action_input}") try: if "http" in action_input: if "<" in action_input: action_input = action_input.strip("<") if ">" in action_input: action_input = action_input.strip(">") response = i_s(action_input) logging.info(f"Search Result: {response}") history.append(("observation: search result is: {}".format(response), "")) else: history.append(("observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n", "")) except Exception as e: history.append(("observation: {}\n".format(e), "")) return "MAIN", None, history, task def call_main(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: """Handles the main agent interaction loop.""" logging.info(f"CALLING MAIN: {action_input}") resp = run_llm( ACTION_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], purpose=purpose, task=task, history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history), ) lines = resp.strip().strip("\n").split("\n") for line in lines: if line == "": continue if line.startswith("thought: "): history.append((line, "")) logging.info(f"Thought: {line}") elif line.startswith("action: "): action_name, action_input = parse_action(line) logging.info(f"Action: {action_name} - {action_input}") history.append((line, "")) if "COMPLETE" in action_name or "COMPLETE" in action_input: task = "END" return action_name, action_input, history, task else: return action_name, action_input, history, task else: history.append((line, "")) logging.info(f"Other Output: {line}") return "MAIN", None, history, task def call_set_task(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: """Sets a new task for the agent.""" logging.info(f"CALLING SET_TASK: {action_input}") task = run_llm( TASK_PROMPT, stop_tokens=[], purpose=purpose, task=task, history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history), ).strip("\n") history.append(("observation: task has been updated to: {}".format(task), "")) return "MAIN", None, history, task def end_fn(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: """Ends the agent interaction.""" logging.info(f"CALLING END_FN: {action_input}") task = "END" return "COMPLETE", "COMPLETE", history, task NAME_TO_FUNC: Dict[str, callable] = { "MAIN": call_main, "UPDATE-TASK": call_set_task, "SEARCH": call_search, "COMPLETE": end_fn, } def run_action(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_name: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: """Executes the specified action.""" logging.info(f"RUNNING ACTION: {action_name} - {action_input}") try: if "RESPONSE" in action_name or "COMPLETE" in action_name: action_name = "COMPLETE" task = "END" return action_name, "COMPLETE", history, task # compress the history when it is long if len(history) > MAX_HISTORY: logging.info("COMPRESSING HISTORY") history = compress_history(purpose, task, history, directory) if not action_name in NAME_TO_FUNC: action_name = "MAIN" if action_name == "" or action_name is None: action_name = "MAIN" assert action_name in NAME_TO_FUNC logging.info(f"RUN: {action_name} - {action_input}") return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) except Exception as e: history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n", "")) logging.error(f"Error in run_action: {e}") return "MAIN", None, history, task def run(purpose: str, history: List[Tuple[str, str]]) -> List[Tuple[str, str]]: """Main agent interaction loop.""" task = None directory = "./" if history: history = str(history).strip("[]") if not history: history = [] action_name = "UPDATE-TASK" if task is None else "MAIN" action_input = None while True: logging.info(f"---") logging.info(f"Purpose: {purpose}") logging.info(f"Task: {task}") logging.info(f"---") logging.info(f"History: {history}") logging.info(f"---") action_name, action_input, history, task = run_action( purpose, task, history, directory, action_name, action_input, ) yield (history) if task == "END": return (history) ################################################ def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 5) -> str: """Formats the prompt for the LLM, including the message and relevant history.""" prompt = " " # Keep only the last 'max_history_turns' turns for user_prompt, bot_response in history[-max_history_turns:]: prompt += f"[INST] {user_prompt} [/ " prompt += f" {bot_response}" prompt += f"[INST] {message} [/ " return prompt def parse_action(line: str) -> Tuple[str, str]: """Parses the action line to get the action name and input.""" parts = line.split(":", 1) if len(parts) == 2: action_name = parts[0].replace("action", "").strip() action_input = parts[1].strip() else: action_name = parts[0].replace("action", "").strip() action_input = "" return action_name, action_input def main(): """Main function to run the Gradio interface.""" global client # Initialize the LLM client with your API key try: client = InferenceClient( MODEL_NAME, token=API_KEY # Replace with your actual API key ) except Exception as e: logging.error(f"Error initializing LLM client: {e}") print("Error initializing LLM client. Please check your API key.") return with gr.Blocks() as demo: gr.Markdown("## FragMixt: The No-Code Development Powerhouse") gr.Markdown("### Your AI-Powered Development Companion") # Chat Interface chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel") # Input Components message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!") purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?") agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True) sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True) temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs") max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens") top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens") repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") # Button to submit the message submit_button = gr.Button(value="Send") # Project Explorer Tab with gr.Tab("Project Explorer"): project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project") explore_button = gr.Button(value="Explore") project_output = gr.Textbox(label="File Tree", lines=20) # Chat App Logic Tab with gr.Tab("Chat App"): history = gr.State([]) examples = [ ["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."], ["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"], ["Generate a simple HTML page with a heading and a paragraph.", "```html\n\n\n\nMy Simple Page\n\n\n

Welcome to my page!

\n

This is a simple paragraph.

\n\n\n```"], ["Create a basic SQL query to select all data from a table named 'users'.", "```sql\nSELECT * FROM users;\n```"], ["Design a user interface for a mobile app that allows users to track their daily expenses.", "Here's a basic UI design for a mobile expense tracker app:\n\n**Screen 1: Home**\n- Top: App Name and Balance Display\n- Middle: List of Recent Transactions (Date, Description, Amount)\n- Bottom: Buttons for Add Expense, Add Income, View Categories\n\n**Screen 2: Add Expense**\n- Input fields for Date, Category, Description, Amount\n- Buttons for Save, Cancel\n\n**Screen 3: Expense Categories**\n- List of expense categories (e.g., Food, Transportation, Entertainment)\n- Option to add/edit categories\n\n**Screen 4: Reports**\n- Charts and graphs to visualize spending by category, date range, etc.\n- Filters to customize the reports"], ] def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]: """Handles the chat interaction.""" prompt = format_prompt(message, history) response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty) history.append((message, response)) return history, history submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history]) # Project Explorer Logic def explore_project(project_path: str) -> str: """Explores the project directory and returns a file tree.""" try: tree = subprocess.check_output(["tree", project_path]).decode("utf-8") return tree except Exception as e: return f"Error exploring project: {e}" explore_button.click(explore_project, inputs=[project_path], outputs=[project_output]) demo.launch() if __name__ == "__main__": main()