Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,183 +1,359 @@
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
import time
|
|
|
|
|
4 |
import random
|
5 |
import nltk
|
6 |
-
|
7 |
-
from
|
8 |
-
|
|
|
|
|
|
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Configure logging
|
14 |
logging.basicConfig(
|
15 |
-
level=logging.INFO,
|
16 |
-
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
17 |
)
|
18 |
-
logger = logging.getLogger(__name__)
|
19 |
|
20 |
-
# Download NLTK data
|
21 |
-
try:
|
22 |
-
|
23 |
-
except Exception as e:
|
24 |
-
|
25 |
|
|
|
26 |
class Config:
|
27 |
MODEL_NAME = "microsoft/DialoGPT-medium"
|
28 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
33 |
class ResourceItem:
|
34 |
-
def __init__(self, content: str):
|
|
|
35 |
self.content = content
|
36 |
-
self.
|
|
|
37 |
self.chunks = []
|
38 |
self.chunk_embeddings = []
|
39 |
|
|
|
|
|
|
|
40 |
def create_chunks(self, chunk_size=Config.CHUNK_SIZE):
|
41 |
-
"""Split content into overlapping chunks for better
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
50 |
class SchoolChatbot:
|
51 |
def __init__(self):
|
52 |
logger.info("Initializing SchoolChatbot...")
|
53 |
self.setup_models()
|
54 |
-
self.resources = []
|
55 |
-
self.
|
56 |
|
57 |
def setup_models(self):
|
58 |
try:
|
59 |
logger.info("Setting up models...")
|
|
|
60 |
self.tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME)
|
61 |
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
|
62 |
self.embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL)
|
|
|
|
|
|
|
|
|
63 |
logger.info("Models setup completed successfully.")
|
64 |
except Exception as e:
|
65 |
logger.error(f"Failed to setup models: {e}")
|
66 |
-
raise RuntimeError("Failed to initialize required models")
|
67 |
-
|
68 |
-
def
|
69 |
-
logger.info("Loading dataset
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
for
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if not self.resources:
|
|
|
88 |
return []
|
89 |
-
|
90 |
try:
|
91 |
query_embedding = self.embedding_model.encode(query)
|
92 |
-
|
93 |
-
|
94 |
for resource in self.resources:
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
if score > Config.SIMILARITY_THRESHOLD:
|
98 |
-
|
99 |
-
|
100 |
-
# Sort by similarity score and
|
101 |
-
|
102 |
-
return
|
103 |
-
|
104 |
except Exception as e:
|
105 |
logger.error(f"Error finding matching chunks: {e}")
|
106 |
return []
|
107 |
|
108 |
-
def generate_response(self, user_input):
|
|
|
109 |
try:
|
110 |
-
# Find
|
111 |
-
best_chunks = self.find_best_matching_chunks
|
112 |
-
|
113 |
if not best_chunks:
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
context = "\n".join([chunk[0] for chunk in best_chunks])
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
temperature=0.7,
|
129 |
top_p=0.9,
|
130 |
-
do_sample=True
|
|
|
131 |
)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
)
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
except Exception as e:
|
141 |
-
logger.
|
142 |
-
return "I apologize, but I encountered an error while processing your question. Please try again."
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
146 |
return chatbot.generate_response(user_input)
|
147 |
-
|
148 |
interface = gr.Interface(
|
149 |
fn=respond,
|
150 |
inputs=gr.Textbox(
|
151 |
label="Ask a Question",
|
152 |
-
placeholder="Type your question
|
153 |
-
lines=
|
154 |
),
|
155 |
outputs=gr.Textbox(
|
156 |
label="Answer",
|
157 |
placeholder="Response will appear here...",
|
158 |
-
lines=
|
159 |
),
|
160 |
-
title="School Information Chatbot",
|
161 |
-
description="Ask about
|
162 |
-
examples=[
|
163 |
-
["What
|
164 |
-
["
|
165 |
-
["
|
166 |
],
|
167 |
theme=gr.themes.Soft(),
|
168 |
-
|
|
|
|
|
169 |
)
|
170 |
return interface
|
171 |
|
|
|
172 |
if __name__ == "__main__":
|
|
|
|
|
|
|
173 |
try:
|
174 |
-
chatbot
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
server_port=7860,
|
179 |
-
share=False,
|
180 |
-
debug=True
|
181 |
)
|
|
|
|
|
|
|
|
|
|
|
182 |
except Exception as e:
|
183 |
-
logger.
|
|
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
import time
|
4 |
+
from datetime import datetime
|
5 |
+
from typing import List, Optional, Tuple
|
6 |
import random
|
7 |
import nltk
|
8 |
+
# nltk.download('punkt') # Ensure punkt is downloaded if needed
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
+
import io
|
11 |
+
# from joblib import dump, load # Not used currently, commented out
|
12 |
+
|
13 |
+
# Import Hugging Face libraries
|
14 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
from sentence_transformers import SentenceTransformer
|
16 |
+
from datasets import load_dataset # Added for dataset loading
|
17 |
+
|
18 |
+
# Import ML/Data libraries
|
19 |
from sklearn.metrics.pairwise import cosine_similarity
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
# Standard libraries
|
23 |
+
from concurrent.futures import ThreadPoolExecutor # Still useful for embedding generation
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(
|
27 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
|
|
28 |
)
|
29 |
+
logger = logging.getLogger(__name__) # Use __name__ for logger
|
30 |
|
31 |
+
# Download NLTK data (optional, might not be strictly needed depending on chunking)
|
32 |
+
# try:
|
33 |
+
# nltk.download('punkt', quiet=True)
|
34 |
+
# except Exception as e:
|
35 |
+
# logger.warning(f"Failed to download NLTK data: {e}")
|
36 |
|
37 |
+
# --- Configuration ---
|
38 |
class Config:
|
39 |
MODEL_NAME = "microsoft/DialoGPT-medium"
|
40 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
41 |
+
MAX_TOKENS_RESPONSE = 150 # Max tokens for the generated response part
|
42 |
+
MAX_TOKENS_INPUT = 800 # Max tokens allowed for context + query (adjust based on model limits)
|
43 |
+
SIMILARITY_THRESHOLD = 0.3 # Adjusted threshold, tune as needed
|
44 |
+
CHUNK_SIZE = 300 # Smaller chunk size might be better for dataset entries
|
45 |
+
MAX_WORKERS = 5 # For parallel embedding generation
|
46 |
+
DATASET_NAME = "acecalisto3/sspnc" # Hugging Face Dataset ID
|
47 |
+
DATASET_SPLIT = "train" # Which split of the dataset to use
|
48 |
+
TEXT_COLUMNS = ["Subject", "Body"] # Columns containing text to index
|
49 |
+
SOURCE_INFO_COLUMNS = ["Subject", "Date"] # Columns to use for source attribution
|
50 |
|
51 |
+
# --- Data Structures ---
|
52 |
class ResourceItem:
|
53 |
+
def __init__(self, source_id: str, content: str, resource_type: str):
|
54 |
+
self.source_id = source_id # Changed 'url' to 'source_id' for clarity
|
55 |
self.content = content
|
56 |
+
self.type = resource_type
|
57 |
+
self.embedding = None # Overall embedding (optional now, as we use chunk embeddings)
|
58 |
self.chunks = []
|
59 |
self.chunk_embeddings = []
|
60 |
|
61 |
+
def __str__(self):
|
62 |
+
return f"ResourceItem(type={self.type}, source_id={self.source_id}, content_length={len(self.content)})"
|
63 |
+
|
64 |
def create_chunks(self, chunk_size=Config.CHUNK_SIZE):
|
65 |
+
"""Split content into overlapping chunks using sentence tokenization for better boundaries"""
|
66 |
+
if not self.content:
|
67 |
+
logger.warning(f"Content is empty for source_id: {self.source_id}. Skipping chunk creation.")
|
68 |
+
return
|
69 |
+
|
70 |
+
try:
|
71 |
+
sentences = sent_tokenize(self.content)
|
72 |
+
except LookupError:
|
73 |
+
logger.warning("NLTK 'punkt' tokenizer not found. Falling back to simple whitespace splitting. Consider running nltk.download('punkt')")
|
74 |
+
# Fallback to word splitting if sentence tokenization fails
|
75 |
+
words = self.content.split()
|
76 |
+
overlap = chunk_size // 4
|
77 |
+
for i in range(0, len(words), chunk_size - overlap):
|
78 |
+
chunk = ' '.join(words[i : i + chunk_size])
|
79 |
+
if chunk:
|
80 |
+
self.chunks.append(chunk)
|
81 |
+
return
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error during sentence tokenization for {self.source_id}: {e}. Skipping chunk creation.")
|
84 |
+
return
|
85 |
+
|
86 |
+
|
87 |
+
current_chunk = ""
|
88 |
+
overlap_sentences = max(1, chunk_size // 100) # Overlap a few sentences
|
89 |
+
last_sentences = []
|
90 |
+
|
91 |
+
for sentence in sentences:
|
92 |
+
# If adding the next sentence exceeds chunk size (considering words approx)
|
93 |
+
if len((current_chunk + " " + sentence).split()) > chunk_size:
|
94 |
+
if current_chunk: # Add the completed chunk
|
95 |
+
self.chunks.append(current_chunk.strip())
|
96 |
+
# Start new chunk with overlap
|
97 |
+
current_chunk = " ".join(last_sentences) + " " + sentence
|
98 |
+
else:
|
99 |
+
current_chunk += " " + sentence
|
100 |
+
|
101 |
+
# Keep track of last sentences for overlap
|
102 |
+
last_sentences.append(sentence)
|
103 |
+
if len(last_sentences) > overlap_sentences:
|
104 |
+
last_sentences.pop(0)
|
105 |
+
|
106 |
+
# Add the last remaining chunk
|
107 |
+
if current_chunk.strip():
|
108 |
+
self.chunks.append(current_chunk.strip())
|
109 |
+
|
110 |
+
if not self.chunks:
|
111 |
+
logger.warning(f"No chunks created for source_id: {self.source_id}. Content might be too short or tokenization failed.")
|
112 |
|
113 |
+
|
114 |
+
# --- Chatbot Core Logic ---
|
115 |
class SchoolChatbot:
|
116 |
def __init__(self):
|
117 |
logger.info("Initializing SchoolChatbot...")
|
118 |
self.setup_models()
|
119 |
+
self.resources: List[ResourceItem] = []
|
120 |
+
self.load_and_index_dataset() # Changed from crawl_and_index_resources
|
121 |
|
122 |
def setup_models(self):
|
123 |
try:
|
124 |
logger.info("Setting up models...")
|
125 |
+
# Consider adding device mapping if GPU is available: device_map="auto"
|
126 |
self.tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME)
|
127 |
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
|
128 |
self.embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL)
|
129 |
+
# Ensure tokenizer has a padding token
|
130 |
+
if self.tokenizer.pad_token is None:
|
131 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
132 |
+
self.model.config.pad_token_id = self.model.config.eos_token_id
|
133 |
logger.info("Models setup completed successfully.")
|
134 |
except Exception as e:
|
135 |
logger.error(f"Failed to setup models: {e}")
|
136 |
+
raise RuntimeError("Failed to initialize required models") from e
|
137 |
+
|
138 |
+
def load_and_index_dataset(self):
|
139 |
+
logger.info(f"Loading dataset: {Config.DATASET_NAME}, split: {Config.DATASET_SPLIT}")
|
140 |
+
try:
|
141 |
+
# Load the dataset
|
142 |
+
dataset = load_dataset(Config.DATASET_NAME, split=Config.DATASET_SPLIT)
|
143 |
+
logger.info(f"Dataset loaded successfully. Number of rows: {len(dataset)}")
|
144 |
+
|
145 |
+
# Process dataset rows in parallel (for embedding generation)
|
146 |
+
with ThreadPoolExecutor(max_workers=Config.MAX_WORKERS) as executor:
|
147 |
+
futures = []
|
148 |
+
for i, row in enumerate(dataset):
|
149 |
+
# Combine text from specified columns
|
150 |
+
text_content = " ".join([str(row[col]) for col in Config.TEXT_COLUMNS if row.get(col)])
|
151 |
+
text_content = text_content.strip() # Remove leading/trailing whitespace
|
152 |
+
|
153 |
+
# Create a source identifier
|
154 |
+
source_parts = [f"{col}: {row[col]}" for col in Config.SOURCE_INFO_COLUMNS if row.get(col)]
|
155 |
+
source_id = f"Dataset Entry {i} ({'; '.join(source_parts)})" # More informative ID
|
156 |
+
|
157 |
+
if not text_content:
|
158 |
+
logger.warning(f"Row {i} has no content in specified columns. Skipping.")
|
159 |
+
continue
|
160 |
+
|
161 |
+
# Submit the processing task
|
162 |
+
futures.append(executor.submit(self.process_and_store_resource, source_id, text_content, 'dataset_entry'))
|
163 |
+
|
164 |
+
# Wait for all futures to complete and collect results
|
165 |
+
for future in futures:
|
166 |
+
try:
|
167 |
+
result_item = future.result()
|
168 |
+
if result_item:
|
169 |
+
self.resources.append(result_item)
|
170 |
+
except Exception as e:
|
171 |
+
logger.error(f"Error processing dataset entry in thread: {e}")
|
172 |
+
|
173 |
+
logger.info(f"Dataset processing completed. Indexed {len(self.resources)} resources.")
|
174 |
+
|
175 |
+
except Exception as e:
|
176 |
+
logger.error(f"Failed to load or process dataset {Config.DATASET_NAME}: {e}")
|
177 |
+
# Decide if the app should continue without data or raise an error
|
178 |
+
# raise RuntimeError("Failed to load data") from e # Option: halt if data fails
|
179 |
+
|
180 |
+
def process_and_store_resource(self, source_id: str, text_data: str, resource_type: str) -> Optional[ResourceItem]:
|
181 |
+
"""Creates ResourceItem, chunks, and generates embeddings for a single data entry."""
|
182 |
+
try:
|
183 |
+
# Create resource item and split into chunks
|
184 |
+
item = ResourceItem(source_id, text_data, resource_type)
|
185 |
+
item.create_chunks()
|
186 |
+
|
187 |
+
if not item.chunks:
|
188 |
+
logger.warning(f"No chunks generated for {source_id}. Skipping storage.")
|
189 |
+
return None
|
190 |
+
|
191 |
+
# Generate embeddings for chunks (can be slow, hence the thread pool)
|
192 |
+
chunk_embeddings_list = self.embedding_model.encode(item.chunks, show_progress_bar=False) # Batch encode
|
193 |
+
item.chunk_embeddings = chunk_embeddings_list
|
194 |
+
|
195 |
+
# Calculate average embedding (optional, might not be needed if only using chunk search)
|
196 |
+
# if item.chunk_embeddings:
|
197 |
+
# item.embedding = np.mean(item.chunk_embeddings, axis=0)
|
198 |
+
|
199 |
+
logger.debug(f"Processed resource: {source_id} (type={resource_type}), {len(item.chunks)} chunks.")
|
200 |
+
return item # Return the processed item
|
201 |
+
|
202 |
+
except Exception as e:
|
203 |
+
logger.error(f"Error processing/storing resource {source_id}: {e}")
|
204 |
+
return None # Return None on error
|
205 |
+
|
206 |
+
# store_resource is now process_and_store_resource and called within the thread pool
|
207 |
+
|
208 |
+
def find_best_matching_chunks(self, query: str, n_chunks: int = 3) -> List[Tuple[str, float, str]]:
|
209 |
+
"""Finds the most relevant text chunks based on semantic similarity."""
|
210 |
if not self.resources:
|
211 |
+
logger.warning("No resources loaded or indexed. Cannot find matches.")
|
212 |
return []
|
213 |
+
|
214 |
try:
|
215 |
query_embedding = self.embedding_model.encode(query)
|
216 |
+
all_chunks_with_scores = []
|
217 |
+
|
218 |
for resource in self.resources:
|
219 |
+
if not resource.chunks or not resource.chunk_embeddings:
|
220 |
+
continue # Skip resources with no chunks/embeddings
|
221 |
+
|
222 |
+
# Calculate similarity between query and all chunks of the current resource
|
223 |
+
similarities = cosine_similarity([query_embedding], resource.chunk_embeddings)[0]
|
224 |
+
|
225 |
+
for chunk, score in zip(resource.chunks, similarities):
|
226 |
if score > Config.SIMILARITY_THRESHOLD:
|
227 |
+
all_chunks_with_scores.append((chunk, float(score), resource.source_id)) # Use source_id
|
228 |
+
|
229 |
+
# Sort by similarity score (descending) and return top n
|
230 |
+
all_chunks_with_scores.sort(key=lambda x: x[1], reverse=True)
|
231 |
+
return all_chunks_with_scores[:n_chunks]
|
232 |
+
|
233 |
except Exception as e:
|
234 |
logger.error(f"Error finding matching chunks: {e}")
|
235 |
return []
|
236 |
|
237 |
+
def generate_response(self, user_input: str) -> str:
|
238 |
+
"""Generates a response based on user input and retrieved context."""
|
239 |
try:
|
240 |
+
# 1. Find relevant context chunks
|
241 |
+
best_chunks = self.find_best_matching_chunks(user_input)
|
242 |
+
|
243 |
if not best_chunks:
|
244 |
+
logger.info(f"No relevant chunks found for query: '{user_input}'")
|
245 |
+
return "I couldn't find specific information related to your question in the provided documents. Could you please rephrase or ask about a different topic?"
|
246 |
+
|
247 |
+
# 2. Prepare context and source attribution
|
248 |
context = "\n".join([chunk[0] for chunk in best_chunks])
|
249 |
+
# Use source_id from the chunk tuple (index 2)
|
250 |
+
source_ids = sorted(list(set(chunk[2] for chunk in best_chunks)))
|
251 |
+
sources_text = "\n\nSources:\n" + "\n".join([f"- {sid}" for sid in source_ids])
|
252 |
+
|
253 |
+
# 3. Prepare input for the language model
|
254 |
+
# Ensure the input doesn't exceed model limits
|
255 |
+
prompt_template = f"Based on the following information:\n{context}\n\nAnswer the question: {user_input}\nAnswer:"
|
256 |
+
# prompt_template = f"Context: {context}\nUser: {user_input}\nAssistant:" # Alternative simpler prompt
|
257 |
+
|
258 |
+
# 4. Tokenize and truncate if necessary
|
259 |
+
input_ids = self.tokenizer.encode(prompt_template, return_tensors='pt', max_length=Config.MAX_TOKENS_INPUT, truncation=True)
|
260 |
+
|
261 |
+
# 5. Generate response using the language model
|
262 |
+
logger.info("Generating response with LLM...")
|
263 |
+
output_sequences = self.model.generate(
|
264 |
+
input_ids=input_ids,
|
265 |
+
max_new_tokens=Config.MAX_TOKENS_RESPONSE, # Control length of *new* tokens
|
266 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
267 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
268 |
temperature=0.7,
|
269 |
top_p=0.9,
|
270 |
+
do_sample=True,
|
271 |
+
num_return_sequences=1 # Generate one response
|
272 |
)
|
273 |
+
|
274 |
+
# Decode the generated part of the response
|
275 |
+
# response_text = self.tokenizer.decode(output_sequences[0], skip_special_tokens=True)
|
276 |
+
# Decode only the newly generated tokens, excluding the prompt
|
277 |
+
response_text = self.tokenizer.decode(output_sequences[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
278 |
+
|
279 |
+
|
280 |
+
# Basic post-processing (optional)
|
281 |
+
response_text = response_text.strip()
|
282 |
+
# Remove potential repetition of the question if the model includes it
|
283 |
+
if user_input.lower() in response_text.lower()[:len(user_input)+10]:
|
284 |
+
response_text = response_text.split(user_input, 1)[-1].strip("? ")
|
285 |
+
|
286 |
+
|
287 |
+
logger.info(f"Generated response (before sources): {response_text}")
|
288 |
+
|
289 |
+
# 6. Combine response and sources
|
290 |
+
full_response = response_text + sources_text
|
291 |
+
return full_response
|
292 |
+
|
293 |
except Exception as e:
|
294 |
+
logger.exception(f"Error generating response: {e}") # Use logger.exception to include stack trace
|
295 |
+
return "I apologize, but I encountered an error while processing your question. Please check the logs or try again later."
|
296 |
|
297 |
+
# --- Gradio Interface ---
|
298 |
+
def create_gradio_interface(chatbot: SchoolChatbot):
|
299 |
+
"""Creates and returns the Gradio web interface."""
|
300 |
+
def respond(user_input: str) -> str:
|
301 |
+
if not user_input:
|
302 |
+
return "Please enter a question."
|
303 |
+
# Add basic input sanitization if needed
|
304 |
return chatbot.generate_response(user_input)
|
305 |
+
|
306 |
interface = gr.Interface(
|
307 |
fn=respond,
|
308 |
inputs=gr.Textbox(
|
309 |
label="Ask a Question",
|
310 |
+
placeholder="Type your question about the school information...",
|
311 |
+
lines=3, # Increased lines slightly
|
312 |
),
|
313 |
outputs=gr.Textbox(
|
314 |
label="Answer",
|
315 |
placeholder="Response will appear here...",
|
316 |
+
lines=10, # Increased lines for longer answers + sources
|
317 |
),
|
318 |
+
title="School Information Chatbot (Dataset Powered)",
|
319 |
+
description="Ask about information contained in the school dataset. The chatbot uses AI to find relevant details and generate answers.",
|
320 |
+
examples=[ # Update examples based on dataset content
|
321 |
+
["What are the main subjects covered in the documents?"],
|
322 |
+
["Are there any mentions of specific events or dates?"],
|
323 |
+
["Summarize the key points about [topic from dataset]."]
|
324 |
],
|
325 |
theme=gr.themes.Soft(),
|
326 |
+
allow_flagging="never", # Changed from flagging_mode
|
327 |
+
# Optional: Add feedback capabilities
|
328 |
+
# feedback=["thumbs", "textbox"],
|
329 |
)
|
330 |
return interface
|
331 |
|
332 |
+
# --- Main Execution ---
|
333 |
if __name__ == "__main__":
|
334 |
+
# Install necessary libraries if running for the first time
|
335 |
+
# pip install gradio transformers sentence-transformers torch datasets scikit-learn nltk numpy beautifulsoup4 requests PyPDF2 icalendar fake-useragent joblib # Ensure all are installed
|
336 |
+
print("Starting application...")
|
337 |
try:
|
338 |
+
# 1. Initialize the chatbot (loads models and data)
|
339 |
+
school_chatbot = SchoolChatbot()
|
340 |
+
|
341 |
+
# 2. Create the Gradio interface
|
342 |
+
app_interface = create_gradio_interface(school_chatbot)
|
343 |
+
|
344 |
+
# 3. Launch the interface
|
345 |
+
print("Launching Gradio Interface...")
|
346 |
+
app_interface.launch(
|
347 |
+
server_name="0.0.0.0", # Accessible on the local network
|
348 |
server_port=7860,
|
349 |
+
share=False, # Set to True to get a public link (use with caution)
|
350 |
+
debug=False # Set to True for more detailed Gradio logs (can be verbose)
|
351 |
)
|
352 |
+
print("Interface launched. Access it at http://localhost:7860 (or the relevant IP)")
|
353 |
+
|
354 |
+
except ImportError as ie:
|
355 |
+
logger.error(f"ImportError: {ie}. Make sure all required libraries are installed.")
|
356 |
+
print(f"ImportError: {ie}. Please install the missing library (e.g., pip install {ie.name}).")
|
357 |
except Exception as e:
|
358 |
+
logger.critical(f"Failed to start the application: {e}", exc_info=True) # Log critical error with stack trace
|
359 |
+
print(f"Critical error during startup: {e}")
|