Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,227 +1,646 @@
|
|
1 |
-
import
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import os
|
4 |
-
import
|
5 |
-
import
|
6 |
-
from
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
MAX_INPUT_TOKENS = 24576 # 24K tokens for input (leaving room for output)
|
12 |
-
MAX_NEW_TOKENS = 8192 # 8K tokens for generation
|
13 |
-
DEFAULT_CONTEXT_LENGTH = 16384 # 16K default context
|
14 |
-
CONFIG_FILE = "chatbot_config.json"
|
15 |
-
CACHE_DIR = "model_cache"
|
16 |
-
|
17 |
-
class EnhancedChatbot:
|
18 |
-
def __init__(self):
|
19 |
-
self.model = None
|
20 |
-
self.tokenizer = None
|
21 |
-
self.model_lock = Lock()
|
22 |
-
|
23 |
-
# Ensure cache directory exists
|
24 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
25 |
-
|
26 |
-
# Initialize configuration with higher limits
|
27 |
-
self.config = self.load_config()
|
28 |
-
|
29 |
-
# Initialize model and tokenizer
|
30 |
-
try:
|
31 |
-
self.load_model()
|
32 |
-
except Exception as e:
|
33 |
-
st.error(f"Error loading model: {str(e)}")
|
34 |
-
logging.error(f"Error loading model: {str(e)}")
|
35 |
-
|
36 |
-
def load_config(self):
|
37 |
-
"""Load or create configuration file with optimized settings"""
|
38 |
-
default_config = {
|
39 |
-
"model_name": DEFAULT_MODEL_NAME,
|
40 |
-
"max_new_tokens": MAX_NEW_TOKENS,
|
41 |
-
"context_length": DEFAULT_CONTEXT_LENGTH,
|
42 |
-
"temperature": 0.7,
|
43 |
-
"top_p": 0.95,
|
44 |
-
"top_k": 50,
|
45 |
-
"repetition_penalty": 1.1,
|
46 |
-
"system_message": "You are a helpful AI assistant with high context understanding.",
|
47 |
-
"gpu_layers": "auto"
|
48 |
-
}
|
49 |
-
|
50 |
-
try:
|
51 |
-
if os.path.exists(CONFIG_FILE):
|
52 |
-
with open(CONFIG_FILE, 'r') as f:
|
53 |
-
config = json.load(f)
|
54 |
-
# Update with any missing keys from default_config
|
55 |
-
for key, value in default_config.items():
|
56 |
-
if key not in config:
|
57 |
-
config[key] = value
|
58 |
-
else:
|
59 |
-
config = default_config
|
60 |
-
self.save_config(config)
|
61 |
-
|
62 |
-
return config
|
63 |
-
|
64 |
-
except Exception as e:
|
65 |
-
logging.error(f"Error loading config: {str(e)}")
|
66 |
-
return default_config
|
67 |
-
|
68 |
-
def load_model(self):
|
69 |
-
"""Load the model and tokenizer with optimized settings"""
|
70 |
-
try:
|
71 |
-
# Clear CUDA cache if using GPU
|
72 |
-
if torch.cuda.is_available():
|
73 |
-
torch.cuda.empty_cache()
|
74 |
-
|
75 |
-
# Load tokenizer first
|
76 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
77 |
-
self.config["model_name"],
|
78 |
-
cache_dir=CACHE_DIR,
|
79 |
-
model_max_length=self.config["context_length"],
|
80 |
-
padding_side="left"
|
81 |
-
)
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
"
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
)
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
st.experimental_rerun()
|
200 |
-
|
201 |
-
# Chat interface
|
202 |
-
if "messages" not in st.session_state:
|
203 |
-
st.session_state.messages = []
|
204 |
-
|
205 |
-
# Display chat messages
|
206 |
-
for message in st.session_state.messages:
|
207 |
-
with st.chat_message(message["role"]):
|
208 |
-
st.markdown(message["content"])
|
209 |
-
|
210 |
-
# Chat input
|
211 |
-
if prompt := st.chat_input("What would you like to know?"):
|
212 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
213 |
-
with st.chat_message("user"):
|
214 |
-
st.markdown(prompt)
|
215 |
-
|
216 |
-
with st.chat_message("assistant"):
|
217 |
-
with st.spinner("Generating response..."):
|
218 |
-
response = chatbot.generate_response(prompt, st.session_state.messages)
|
219 |
-
st.markdown(response)
|
220 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
221 |
-
|
222 |
-
except Exception as e:
|
223 |
-
st.error(f"Application Error: {str(e)}")
|
224 |
-
logging.error(f"Application Error: {str(e)}")
|
225 |
-
|
226 |
-
if __name__ == "__main__":
|
227 |
-
main()
|
|
|
1 |
+
import io
|
|
|
2 |
import os
|
3 |
+
import re
|
4 |
+
import time
|
5 |
+
from itertools import islice
|
6 |
+
from functools import partial
|
7 |
+
from multiprocessing.pool import ThreadPool
|
8 |
+
from queue import Queue, Empty
|
9 |
+
from typing import Callable, Iterable, Iterator, Optional, TypeVar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
import gradio as gr
|
12 |
+
import pandas as pd
|
13 |
+
import requests.exceptions
|
14 |
+
from huggingface_hub import InferenceClient, create_repo, whoami, DatasetCard
|
15 |
+
|
16 |
+
|
17 |
+
model_id = "microsoft/Phi-3-mini-4k-instruct"
|
18 |
+
client = InferenceClient(model_id)
|
19 |
+
save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")
|
20 |
+
|
21 |
+
MAX_TOTAL_NB_ITEMS = 100 # almost infinite, don't judge me (actually it's because gradio needs a fixed number of components)
|
22 |
+
MAX_NB_ITEMS_PER_GENERATION_CALL = 10
|
23 |
+
NUM_ROWS = 100
|
24 |
+
NUM_VARIANTS = 10
|
25 |
+
NAMESPACE = "infinite-dataset-hub"
|
26 |
+
URL = "https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub"
|
27 |
+
|
28 |
+
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY = (
|
29 |
+
"A Machine Learning Practioner is looking for a dataset that matches '{search_query}'. "
|
30 |
+
f"Generate a list of {MAX_NB_ITEMS_PER_GENERATION_CALL} names of quality datasets that don't exist but sound plausible and would "
|
31 |
+
"be helpful. Feel free to reuse words from the query '{search_query}' to name the datasets. "
|
32 |
+
"Every dataset should be about '{search_query}' and have descriptive tags/keywords including the ML task name associated with the dataset (classification, regression, anomaly detection, etc.). Use the following format:\n1. DatasetName1 (tag1, tag2, tag3)\n1. DatasetName2 (tag1, tag2, tag3)"
|
33 |
+
)
|
34 |
+
|
35 |
+
GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS = (
|
36 |
+
"An ML practitioner is looking for a dataset CSV after the query '{search_query}'. "
|
37 |
+
"Generate the first 5 rows of a plausible and quality CSV for the dataset '{dataset_name}'. "
|
38 |
+
"You can get inspiration from related keywords '{tags}' but most importantly the dataset should correspond to the query '{search_query}'. "
|
39 |
+
"Focus on quality text content and use a 'label' or 'labels' column if it makes sense (invent labels, avoid reusing the keywords, be accurate while labelling texts). "
|
40 |
+
"Reply using a short description of the dataset with title **Dataset Description:** followed by the CSV content in a code block and with title **CSV Content Preview:**."
|
41 |
+
)
|
42 |
+
GENERATE_MORE_ROWS = "Can you give me 10 additional samples in CSV format as well? Use the same CSV header '{csv_header}'."
|
43 |
+
GENERATE_VARIANTS_WITH_RARITY_AND_LABEL = "Focus on generating samples for the label '{label}' and ideally generate {rarity} samples."
|
44 |
+
GENERATE_VARIANTS_WITH_RARITY = "Focus on generating {rarity} samples."
|
45 |
+
|
46 |
+
RARITIES = ["pretty obvious", "common/regular", "unexpected but useful", "uncommon but still plausible", "rare/niche but still plausible"]
|
47 |
+
LONG_RARITIES = [
|
48 |
+
"obvious",
|
49 |
+
"expected",
|
50 |
+
"common",
|
51 |
+
"regular",
|
52 |
+
"unexpected but useful"
|
53 |
+
"original but useful",
|
54 |
+
"specific but not far-fetched",
|
55 |
+
"uncommon but still plausible",
|
56 |
+
"rare but still plausible",
|
57 |
+
"very niche but still plausible",
|
58 |
+
]
|
59 |
+
|
60 |
+
landing_page_datasets_generated_text = """
|
61 |
+
1. NewsEventsPredict (classification, media, trend)
|
62 |
+
2. FinancialForecast (economy, stocks, regression)
|
63 |
+
3. HealthMonitor (science, real-time, anomaly detection)
|
64 |
+
4. SportsAnalysis (classification, performance, player tracking)
|
65 |
+
5. SciLiteracyTools (language modeling, science literacy, text classification)
|
66 |
+
6. RetailSalesAnalyzer (consumer behavior, sales trend, segmentation)
|
67 |
+
7. SocialSentimentEcho (social media, emotion analysis, clustering)
|
68 |
+
8. NewsEventTracker (classification, public awareness, topical clustering)
|
69 |
+
9. HealthVitalSigns (anomaly detection, biometrics, prediction)
|
70 |
+
10. GameStockPredict (classification, finance, sports contingency)
|
71 |
+
"""
|
72 |
+
default_output = landing_page_datasets_generated_text.strip().split("\n")
|
73 |
+
assert len(default_output) == MAX_NB_ITEMS_PER_GENERATION_CALL
|
74 |
+
|
75 |
+
DATASET_CARD_CONTENT = """
|
76 |
+
---
|
77 |
+
license: mit
|
78 |
+
tags:
|
79 |
+
- infinite-dataset-hub
|
80 |
+
- synthetic
|
81 |
+
---
|
82 |
+
{title}
|
83 |
+
_Note: This is an AI-generated dataset so its content may be inaccurate or false_
|
84 |
+
{content}
|
85 |
+
**Source of the data:**
|
86 |
+
The dataset was generated using the [Infinite Dataset Hub]({url}) and {model_id} using the query '{search_query}':
|
87 |
+
- **Dataset Generation Page**: {dataset_url}
|
88 |
+
- **Model**: https://huggingface.co/{model_id}
|
89 |
+
- **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
|
90 |
+
"""
|
91 |
+
|
92 |
+
css = """
|
93 |
+
a {
|
94 |
+
color: var(--body-text-color);
|
95 |
+
}
|
96 |
+
.datasetButton {
|
97 |
+
justify-content: start;
|
98 |
+
justify-content: left;
|
99 |
+
}
|
100 |
+
.tags {
|
101 |
+
font-size: var(--button-small-text-size);
|
102 |
+
color: var(--body-text-color-subdued);
|
103 |
+
}
|
104 |
+
.topButton {
|
105 |
+
justify-content: start;
|
106 |
+
justify-content: left;
|
107 |
+
text-align: left;
|
108 |
+
background: transparent;
|
109 |
+
box-shadow: none;
|
110 |
+
padding-bottom: 0;
|
111 |
+
}
|
112 |
+
.topButton::before {
|
113 |
+
content: url("data:image/svg+xml,%3Csvg style='color: rgb(209 213 219)' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' aria-hidden='true' focusable='false' role='img' width='1em' height='1em' preserveAspectRatio='xMidYMid meet' viewBox='0 0 25 25'%3E%3Cellipse cx='12.5' cy='5' fill='currentColor' fill-opacity='0.25' rx='7.5' ry='2'%3E%3C/ellipse%3E%3Cpath d='M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z' fill='currentColor'%3E%3C/path%3E%3C/svg%3E");
|
114 |
+
margin-right: .25rem;
|
115 |
+
margin-left: -.125rem;
|
116 |
+
margin-top: .25rem;
|
117 |
+
}
|
118 |
+
.bottomButton {
|
119 |
+
justify-content: start;
|
120 |
+
justify-content: left;
|
121 |
+
text-align: left;
|
122 |
+
background: transparent;
|
123 |
+
box-shadow: none;
|
124 |
+
font-size: var(--button-small-text-size);
|
125 |
+
color: var(--body-text-color-subdued);
|
126 |
+
padding-top: 0;
|
127 |
+
align-items: baseline;
|
128 |
+
}
|
129 |
+
.bottomButton::before {
|
130 |
+
content: 'tags:';
|
131 |
+
margin-right: .25rem;
|
132 |
+
}
|
133 |
+
.buttonsGroup {
|
134 |
+
background: transparent;
|
135 |
+
}
|
136 |
+
.buttonsGroup:hover {
|
137 |
+
background: var(--input-background-fill);
|
138 |
+
}
|
139 |
+
.buttonsGroup div {
|
140 |
+
background: transparent;
|
141 |
+
}
|
142 |
+
.insivibleButtonGroup {
|
143 |
+
display: none;
|
144 |
+
}
|
145 |
+
@keyframes placeHolderShimmer{
|
146 |
+
0%{
|
147 |
+
background-position: -468px 0
|
148 |
+
}
|
149 |
+
100%{
|
150 |
+
background-position: 468px 0
|
151 |
+
}
|
152 |
+
}
|
153 |
+
.linear-background {
|
154 |
+
animation-duration: 1s;
|
155 |
+
animation-fill-mode: forwards;
|
156 |
+
animation-iteration-count: infinite;
|
157 |
+
animation-name: placeHolderShimmer;
|
158 |
+
animation-timing-function: linear;
|
159 |
+
background-image: linear-gradient(to right, var(--body-text-color-subdued) 8%, #dddddd11 18%, var(--body-text-color-subdued) 33%);
|
160 |
+
background-size: 1000px 104px;
|
161 |
+
color: transparent;
|
162 |
+
background-clip: text;
|
163 |
+
}
|
164 |
+
.settings {
|
165 |
+
background: transparent;
|
166 |
+
}
|
167 |
+
.settings button span {
|
168 |
+
color: var(--body-text-color-subdued);
|
169 |
+
}
|
170 |
+
"""
|
171 |
+
|
172 |
+
|
173 |
+
with gr.Blocks(css=css) as demo:
|
174 |
+
generated_texts_state = gr.State((landing_page_datasets_generated_text,))
|
175 |
+
with gr.Column() as search_page:
|
176 |
+
with gr.Row():
|
177 |
+
with gr.Column(scale=10):
|
178 |
+
gr.Markdown(
|
179 |
+
"# 🤗 Infinite Dataset Hub ♾️\n\n"
|
180 |
+
"An endless catalog of datasets, created just for you by an AI model.\n\n"
|
181 |
)
|
182 |
+
with gr.Row():
|
183 |
+
search_bar = gr.Textbox(max_lines=1, placeholder="Search datasets, get infinite results", show_label=False, container=False, scale=9)
|
184 |
+
search_button = gr.Button("🔍", variant="primary", scale=1)
|
185 |
+
button_groups: list[gr.Group] = []
|
186 |
+
buttons: list[gr.Button] = []
|
187 |
+
for i in range(MAX_TOTAL_NB_ITEMS):
|
188 |
+
if i < len(default_output):
|
189 |
+
line = default_output[i]
|
190 |
+
dataset_name, tags = line.split(".", 1)[1].strip(" )").split(" (", 1)
|
191 |
+
group_classes = "buttonsGroup"
|
192 |
+
dataset_name_classes = "topButton"
|
193 |
+
tags_classes = "bottomButton"
|
194 |
+
else:
|
195 |
+
dataset_name, tags = "⬜⬜⬜⬜⬜⬜", "░░░░, ░░░░, ░░░░"
|
196 |
+
group_classes = "buttonsGroup insivibleButtonGroup"
|
197 |
+
dataset_name_classes = "topButton linear-background"
|
198 |
+
tags_classes = "bottomButton linear-background"
|
199 |
+
with gr.Group(elem_classes=group_classes) as button_group:
|
200 |
+
button_groups.append(button_group)
|
201 |
+
buttons.append(gr.Button(dataset_name, elem_classes=dataset_name_classes))
|
202 |
+
buttons.append(gr.Button(tags, elem_classes=tags_classes))
|
203 |
+
|
204 |
+
load_more_datasets = gr.Button("Load more datasets") # TODO: dosable when reaching end of page
|
205 |
+
gr.Markdown(f"_powered by [{model_id}](https://huggingface.co/{model_id})_")
|
206 |
+
with gr.Column(scale=4, min_width="200px"):
|
207 |
+
with gr.Accordion("Settings", open=False, elem_classes="settings"):
|
208 |
+
gr.Markdown("Save datasets to your account")
|
209 |
+
gr.LoginButton()
|
210 |
+
select_namespace_dropdown = gr.Dropdown(choices=[NAMESPACE], value=NAMESPACE, label="Select user or organization", visible=False)
|
211 |
+
gr.Markdown("Save datasets as public or private datasets")
|
212 |
+
visibility_radio = gr.Radio(["public", "private"], value="public", container=False, interactive=False)
|
213 |
+
with gr.Column(visible=False) as dataset_page:
|
214 |
+
gr.Markdown(
|
215 |
+
"# 🤗 Infinite Dataset Hub ♾️\n\n"
|
216 |
+
"An endless catalog of datasets, created just for you.\n\n"
|
217 |
+
)
|
218 |
+
dataset_title = gr.Markdown()
|
219 |
+
gr.Markdown("_Note: This is an AI-generated dataset so its content may be inaccurate or false_")
|
220 |
+
dataset_content = gr.Markdown()
|
221 |
+
generate_full_dataset_button = gr.Button("Generate Full Dataset", variant="primary")
|
222 |
+
dataset_dataframe = gr.DataFrame(visible=False, interactive=False, wrap=True)
|
223 |
+
save_dataset_button = gr.Button("💾 Save Dataset", variant="primary", visible=False)
|
224 |
+
open_dataset_message = gr.Markdown("", visible=False)
|
225 |
+
dataset_share_button = gr.Button("Share Dataset URL")
|
226 |
+
dataset_share_textbox = gr.Textbox(visible=False, show_copy_button=True, label="Copy this URL:", interactive=False, show_label=True)
|
227 |
+
back_button = gr.Button("< Back", size="sm")
|
228 |
+
|
229 |
+
###################################
|
230 |
+
#
|
231 |
+
# Utils
|
232 |
+
#
|
233 |
+
###################################
|
234 |
+
|
235 |
+
T = TypeVar("T")
|
236 |
+
|
237 |
+
def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
|
238 |
+
it = iter(it)
|
239 |
+
while batch := list(islice(it, n)):
|
240 |
+
yield batch
|
241 |
+
|
242 |
+
|
243 |
+
def stream_reponse(msg: str, generated_texts: tuple[str] = (), max_tokens=500) -> Iterator[str]:
|
244 |
+
messages = [
|
245 |
+
{"role": "user", "content": msg}
|
246 |
+
] + [
|
247 |
+
item
|
248 |
+
for generated_text in generated_texts
|
249 |
+
for item in [
|
250 |
+
{"role": "assistant", "content": generated_text},
|
251 |
+
{"role": "user", "content": "Can you generate more ?"},
|
252 |
+
]
|
253 |
+
]
|
254 |
+
for _ in range(3):
|
255 |
+
try:
|
256 |
+
for message in client.chat_completion(
|
257 |
+
messages=messages,
|
258 |
+
max_tokens=max_tokens,
|
259 |
+
stream=True,
|
260 |
+
top_p=0.8,
|
261 |
+
seed=42,
|
262 |
+
):
|
263 |
+
yield message.choices[0].delta.content
|
264 |
+
except requests.exceptions.ConnectionError as e:
|
265 |
+
print(e + "\n\nRetrying in 1sec")
|
266 |
+
time.sleep(1)
|
267 |
+
continue
|
268 |
+
break
|
269 |
+
|
270 |
+
|
271 |
+
def gen_datasets_line_by_line(search_query: str, generated_texts: tuple[str] = ()) -> Iterator[str]:
|
272 |
+
search_query = search_query or ""
|
273 |
+
search_query = search_query[:1000] if search_query.strip() else ""
|
274 |
+
generated_text = ""
|
275 |
+
current_line = ""
|
276 |
+
for token in stream_reponse(
|
277 |
+
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY.format(search_query=search_query),
|
278 |
+
generated_texts=generated_texts,
|
279 |
+
):
|
280 |
+
current_line += token
|
281 |
+
if current_line.endswith("\n"):
|
282 |
+
yield current_line
|
283 |
+
generated_text += current_line
|
284 |
+
current_line = ""
|
285 |
+
yield current_line
|
286 |
+
generated_text += current_line
|
287 |
+
print("-----\n\n" + generated_text)
|
288 |
+
|
289 |
+
|
290 |
+
def gen_dataset_content(search_query: str, dataset_name: str, tags: str) -> Iterator[str]:
|
291 |
+
search_query = search_query or ""
|
292 |
+
search_query = search_query[:1000] if search_query.strip() else ""
|
293 |
+
generated_text = ""
|
294 |
+
for token in stream_reponse(GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
|
295 |
+
search_query=search_query,
|
296 |
+
dataset_name=dataset_name,
|
297 |
+
tags=tags,
|
298 |
+
), max_tokens=1500):
|
299 |
+
generated_text += token
|
300 |
+
yield generated_text
|
301 |
+
print("-----\n\n" + generated_text)
|
302 |
+
|
303 |
+
|
304 |
+
def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
|
305 |
+
for i, result in enumerate(func(**kwargs)):
|
306 |
+
queue.put(result)
|
307 |
+
return None
|
308 |
+
|
309 |
+
|
310 |
+
def iflatmap_unordered(
|
311 |
+
func: Callable[..., Iterable[T]],
|
312 |
+
*,
|
313 |
+
kwargs_iterable: Iterable[dict],
|
314 |
+
) -> Iterable[T]:
|
315 |
+
queue = Queue()
|
316 |
+
with ThreadPool() as pool:
|
317 |
+
async_results = [
|
318 |
+
pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable
|
319 |
+
]
|
320 |
+
try:
|
321 |
+
while True:
|
322 |
+
try:
|
323 |
+
yield queue.get(timeout=0.05)
|
324 |
+
except Empty:
|
325 |
+
if all(async_result.ready() for async_result in async_results) and queue.empty():
|
326 |
+
break
|
327 |
+
finally:
|
328 |
+
# we get the result in case there's an error to raise
|
329 |
+
[async_result.get(timeout=0.05) for async_result in async_results]
|
330 |
+
|
331 |
+
|
332 |
+
def generate_partial_dataset(title: str, content: str, search_query: str, variant: str, csv_header: str, output: list[dict[str, str]], indices_to_generate: list[int], max_tokens=1500) -> Iterator[int]:
|
333 |
+
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
|
334 |
+
dataset_name, tags = dataset_name.strip(), tags.strip()
|
335 |
+
messages = [
|
336 |
+
{
|
337 |
+
"role": "user",
|
338 |
+
"content": GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
|
339 |
+
dataset_name=dataset_name,
|
340 |
+
tags=tags,
|
341 |
+
search_query=search_query,
|
342 |
+
)
|
343 |
+
},
|
344 |
+
{"role": "assistant", "content": title + "\n\n" + content},
|
345 |
+
{"role": "user", "content": GENERATE_MORE_ROWS.format(csv_header=csv_header) + " " + variant},
|
346 |
+
]
|
347 |
+
for _ in range(3):
|
348 |
+
generated_text = ""
|
349 |
+
generated_csv = ""
|
350 |
+
current_line = ""
|
351 |
+
nb_samples = 0
|
352 |
+
_in_csv = False
|
353 |
+
try:
|
354 |
+
for message in client.chat_completion(
|
355 |
+
messages=messages,
|
356 |
+
max_tokens=max_tokens,
|
357 |
+
stream=True,
|
358 |
+
top_p=0.8,
|
359 |
+
seed=42,
|
360 |
+
):
|
361 |
+
if nb_samples >= len(indices_to_generate):
|
362 |
+
break
|
363 |
+
current_line += message.choices[0].delta.content
|
364 |
+
generated_text += message.choices[0].delta.content
|
365 |
+
if current_line.endswith("\n"):
|
366 |
+
_in_csv = _in_csv ^ current_line.lstrip().startswith("```")
|
367 |
+
if current_line.strip() and _in_csv and not current_line.lstrip().startswith("```"):
|
368 |
+
generated_csv += current_line
|
369 |
+
try:
|
370 |
+
generated_df = parse_csv_df(generated_csv.strip(), csv_header=csv_header)
|
371 |
+
if len(generated_df) > nb_samples:
|
372 |
+
output[indices_to_generate[nb_samples]] = generated_df.iloc[-1].to_dict()
|
373 |
+
nb_samples += 1
|
374 |
+
yield 1
|
375 |
+
except Exception:
|
376 |
+
pass
|
377 |
+
current_line = ""
|
378 |
+
except requests.exceptions.ConnectionError as e:
|
379 |
+
print(e + "\n\nRetrying in 1sec")
|
380 |
+
time.sleep(1)
|
381 |
+
continue
|
382 |
+
break
|
383 |
+
# for debugging
|
384 |
+
# with open(f".output{indices_to_generate[0]}.txt", "w") as f:
|
385 |
+
# f.write(generated_text)
|
386 |
+
|
387 |
+
|
388 |
+
def generate_variants(preview_df: pd.DataFrame):
|
389 |
+
label_candidate_columns = [column for column in preview_df.columns if "label" in column.lower()]
|
390 |
+
if label_candidate_columns:
|
391 |
+
labels = preview_df[label_candidate_columns[0]].unique()
|
392 |
+
if len(labels) > 1:
|
393 |
+
return [
|
394 |
+
GENERATE_VARIANTS_WITH_RARITY_AND_LABEL.format(rarity=rarity, label=label)
|
395 |
+
for rarity in RARITIES
|
396 |
+
for label in labels
|
397 |
+
]
|
398 |
+
return [
|
399 |
+
GENERATE_VARIANTS_WITH_RARITY.format(rarity=rarity)
|
400 |
+
for rarity in LONG_RARITIES
|
401 |
+
]
|
402 |
+
|
403 |
+
|
404 |
+
def parse_preview_df(content: str) -> tuple[str, pd.DataFrame]:
|
405 |
+
_in_csv = False
|
406 |
+
csv = "\n".join(
|
407 |
+
line for line in content.split("\n") if line.strip()
|
408 |
+
and (_in_csv := (_in_csv ^ line.lstrip().startswith("```")))
|
409 |
+
and not line.lstrip().startswith("```")
|
410 |
+
)
|
411 |
+
if not csv:
|
412 |
+
raise gr.Error("Failed to parse CSV Preview")
|
413 |
+
return csv.split("\n")[0], parse_csv_df(csv)
|
414 |
|
415 |
+
|
416 |
+
def parse_csv_df(csv: str, csv_header: Optional[str] = None) -> pd.DataFrame:
|
417 |
+
# Fix generation mistake when providing a list that is not in quotes
|
418 |
+
for match in re.finditer(r'''(?!")\[(["'][\w ]+["'][, ]*)+\](?!")''', csv):
|
419 |
+
span = match.string[match.start() : match.end()]
|
420 |
+
csv = csv.replace(span, '"' + span.replace('"', "'") + '"', 1)
|
421 |
+
# Add header if missing
|
422 |
+
if csv_header and csv.strip().split("\n")[0] != csv_header:
|
423 |
+
csv = csv_header + "\n" + csv
|
424 |
+
# Read CSV
|
425 |
+
df = pd.read_csv(io.StringIO(csv), skipinitialspace=True)
|
426 |
+
return df
|
427 |
+
|
428 |
+
|
429 |
+
###################################
|
430 |
+
#
|
431 |
+
# Buttons
|
432 |
+
#
|
433 |
+
###################################
|
434 |
+
|
435 |
+
|
436 |
+
def _search_datasets(search_query):
|
437 |
+
yield {generated_texts_state: []}
|
438 |
+
yield {
|
439 |
+
button_group: gr.Group(elem_classes="buttonsGroup insivibleButtonGroup")
|
440 |
+
for button_group in button_groups[MAX_NB_ITEMS_PER_GENERATION_CALL:]
|
441 |
+
}
|
442 |
+
yield {
|
443 |
+
k: v
|
444 |
+
for dataset_name_button, tags_button in batched(buttons, 2)
|
445 |
+
for k, v in {
|
446 |
+
dataset_name_button: gr.Button("⬜⬜⬜⬜⬜⬜", elem_classes="topButton linear-background"),
|
447 |
+
tags_button: gr.Button("░░░░, ░░░░, ░░░░", elem_classes="bottomButton linear-background")
|
448 |
+
}.items()
|
449 |
+
}
|
450 |
+
current_item_idx = 0
|
451 |
+
generated_text = ""
|
452 |
+
for line in gen_datasets_line_by_line(search_query):
|
453 |
+
if "I'm sorry" in line or "against Microsoft's use case policy" in line:
|
454 |
+
raise gr.Error("Error: inappropriate content")
|
455 |
+
if current_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
|
456 |
+
return
|
457 |
+
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
|
458 |
+
try:
|
459 |
+
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
|
460 |
+
except ValueError:
|
461 |
+
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1)
|
462 |
+
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
|
463 |
+
generated_text += line
|
464 |
+
yield {
|
465 |
+
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
|
466 |
+
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
|
467 |
+
generated_texts_state: (generated_text,),
|
468 |
+
}
|
469 |
+
current_item_idx += 1
|
470 |
+
|
471 |
+
|
472 |
+
@search_button.click(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
|
473 |
+
def search_dataset_from_search_button(search_query):
|
474 |
+
yield from _search_datasets(search_query)
|
475 |
+
|
476 |
+
|
477 |
+
@search_bar.submit(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
|
478 |
+
def search_dataset_from_search_bar(search_query):
|
479 |
+
yield from _search_datasets(search_query)
|
480 |
+
|
481 |
+
|
482 |
+
@load_more_datasets.click(inputs=[search_bar, generated_texts_state], outputs=button_groups + buttons + [generated_texts_state])
|
483 |
+
def search_more_datasets(search_query, generated_texts):
|
484 |
+
current_item_idx = initial_item_idx = len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL
|
485 |
+
yield {
|
486 |
+
button_group: gr.Group(elem_classes="buttonsGroup")
|
487 |
+
for button_group in button_groups[len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL:(len(generated_texts) + 1) * MAX_NB_ITEMS_PER_GENERATION_CALL]
|
488 |
+
}
|
489 |
+
generated_text = ""
|
490 |
+
for line in gen_datasets_line_by_line(search_query, generated_texts=generated_texts):
|
491 |
+
if "I'm sorry" in line or "against Microsoft's use case policy" in line:
|
492 |
+
raise gr.Error("Error: inappropriate content")
|
493 |
+
if current_item_idx - initial_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
|
494 |
+
return
|
495 |
+
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
|
496 |
+
try:
|
497 |
+
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
|
498 |
+
except ValueError:
|
499 |
+
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1) [0], ""
|
500 |
+
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
|
501 |
+
generated_text += line
|
502 |
+
yield {
|
503 |
+
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
|
504 |
+
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
|
505 |
+
generated_texts_state: (*generated_texts, generated_text),
|
506 |
+
}
|
507 |
+
current_item_idx += 1
|
508 |
+
|
509 |
+
def _show_dataset(search_query, dataset_name, tags):
|
510 |
+
yield {
|
511 |
+
search_page: gr.Column(visible=False),
|
512 |
+
dataset_page: gr.Column(visible=True),
|
513 |
+
dataset_title: f"# {dataset_name}\n\n tags: {tags}",
|
514 |
+
dataset_share_textbox: gr.Textbox(visible=False),
|
515 |
+
dataset_dataframe: gr.DataFrame(visible=False),
|
516 |
+
generate_full_dataset_button: gr.Button(interactive=True),
|
517 |
+
save_dataset_button: gr.Button(visible=False),
|
518 |
+
open_dataset_message: gr.Markdown(visible=False)
|
519 |
+
}
|
520 |
+
for generated_text in gen_dataset_content(search_query=search_query, dataset_name=dataset_name, tags=tags):
|
521 |
+
yield {dataset_content: generated_text}
|
522 |
+
|
523 |
+
|
524 |
+
show_dataset_inputs = [search_bar, *buttons]
|
525 |
+
show_dataset_outputs = [search_page, dataset_page, dataset_title, dataset_content, generate_full_dataset_button, dataset_dataframe, save_dataset_button, open_dataset_message, dataset_share_textbox]
|
526 |
+
scroll_to_top_js = """
|
527 |
+
function (...args) {
|
528 |
+
console.log(args);
|
529 |
+
if ('parentIFrame' in window) {
|
530 |
+
window.parentIFrame.scrollTo({top: 0, behavior:'smooth'});
|
531 |
+
} else {
|
532 |
+
window.scrollTo({ top: 0 });
|
533 |
+
}
|
534 |
+
return args;
|
535 |
+
}
|
536 |
+
"""
|
537 |
+
|
538 |
+
def show_dataset_from_button(search_query, *buttons_values, i):
|
539 |
+
dataset_name, tags = buttons_values[2 * i : 2 * i + 2]
|
540 |
+
yield from _show_dataset(search_query, dataset_name, tags)
|
541 |
|
542 |
+
for i, (dataset_name_button, tags_button) in enumerate(batched(buttons, 2)):
|
543 |
+
dataset_name_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)
|
544 |
+
tags_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)
|
545 |
+
|
546 |
+
|
547 |
+
@back_button.click(outputs=[search_page, dataset_page], js=scroll_to_top_js)
|
548 |
+
def show_search_page():
|
549 |
+
return gr.Column(visible=True), gr.Column(visible=False)
|
550 |
+
|
551 |
+
|
552 |
+
@generate_full_dataset_button.click(inputs=[dataset_title, dataset_content, search_bar, select_namespace_dropdown, visibility_radio], outputs=[dataset_dataframe, generate_full_dataset_button, save_dataset_button])
|
553 |
+
def generate_full_dataset(title, content, search_query, namespace, visability):
|
554 |
+
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
|
555 |
+
dataset_name, tags = dataset_name.strip(), tags.strip()
|
556 |
+
csv_header, preview_df = parse_preview_df(content)
|
557 |
+
# Remove dummy "id" columns
|
558 |
+
for column_name, values in preview_df.to_dict(orient="series").items():
|
559 |
+
try:
|
560 |
+
if [int(v) for v in values] == list(range(len(preview_df))):
|
561 |
+
preview_df = preview_df.drop(columns=column_name)
|
562 |
+
if [int(v) for v in values] == list(range(1, len(preview_df) + 1)):
|
563 |
+
preview_df = preview_df.drop(columns=column_name)
|
564 |
+
except Exception:
|
565 |
+
pass
|
566 |
+
columns = list(preview_df)
|
567 |
+
output: list[Optional[dict]] = [None] * NUM_ROWS
|
568 |
+
output[:len(preview_df)] = [{"idx": i, **x} for i, x in enumerate(preview_df.to_dict(orient="records"))]
|
569 |
+
yield {
|
570 |
+
dataset_dataframe: gr.DataFrame(pd.DataFrame([{"idx": i, **x} for i, x in enumerate(output) if x]), visible=True),
|
571 |
+
generate_full_dataset_button: gr.Button(interactive=False),
|
572 |
+
save_dataset_button: gr.Button(f"💾 Save Dataset {namespace}/{dataset_name}" + (" (private)" if visability != "public" else ""), visible=True, interactive=False)
|
573 |
+
}
|
574 |
+
kwargs_iterable = [
|
575 |
+
{
|
576 |
+
"title": title,
|
577 |
+
"content": content,
|
578 |
+
"search_query": search_query,
|
579 |
+
"variant": variant,
|
580 |
+
"csv_header": csv_header,
|
581 |
+
"output": output,
|
582 |
+
"indices_to_generate": list(range(len(preview_df) + i, NUM_ROWS, NUM_VARIANTS)),
|
583 |
+
}
|
584 |
+
for i, variant in enumerate(islice(generate_variants(preview_df), NUM_VARIANTS))
|
585 |
+
]
|
586 |
+
for _ in iflatmap_unordered(generate_partial_dataset, kwargs_iterable=kwargs_iterable):
|
587 |
+
yield {dataset_dataframe: pd.DataFrame([{"idx": i, **{column_name: x.get(column_name) for column_name in columns}} for i, x in enumerate(output) if x])}
|
588 |
+
yield {save_dataset_button: gr.Button(interactive=True)}
|
589 |
+
print(f"Generated {dataset_name}!")
|
590 |
+
|
591 |
+
|
592 |
+
@save_dataset_button.click(inputs=[dataset_title, dataset_content, search_bar, dataset_dataframe, select_namespace_dropdown, visibility_radio], outputs=[save_dataset_button, open_dataset_message])
|
593 |
+
def save_dataset(title: str, content: str, search_query: str, df: pd.DataFrame, namespace: str, visability: str, oauth_token: Optional[gr.OAuthToken]):
|
594 |
+
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
|
595 |
+
dataset_name, tags = dataset_name.strip(), tags.strip()
|
596 |
+
token = oauth_token.token if oauth_token else save_dataset_hf_token
|
597 |
+
repo_id = f"{namespace}/{dataset_name}"
|
598 |
+
dataset_url = f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}"
|
599 |
+
gr.Info("Saving dataset...")
|
600 |
+
yield {save_dataset_button: gr.Button(interactive=False)}
|
601 |
+
create_repo(repo_id=repo_id, repo_type="dataset", private=visability!="public", exist_ok=True, token=token)
|
602 |
+
df.to_csv(f"hf://datasets/{repo_id}/data.csv", storage_options={"token": token}, index=False)
|
603 |
+
DatasetCard(DATASET_CARD_CONTENT.format(title=title, content=content, url=URL, dataset_url=dataset_url, model_id=model_id, search_query=search_query)).push_to_hub(repo_id=repo_id, repo_type="dataset", token=token)
|
604 |
+
gr.Info(f"✅ Dataset saved at {repo_id}")
|
605 |
+
additional_message = "PS: You can also save datasets under your account in the Settings ;)"
|
606 |
+
yield {open_dataset_message: gr.Markdown(f"# 🎉 Yay ! Your dataset has been saved to [{repo_id}](https://huggingface.co/datasets/{repo_id}) !\n\nDataset link: [https://huggingface.co/datasets/{repo_id}](https://huggingface.co/datasets/{repo_id})\n\n{additional_message}", visible=True)}
|
607 |
+
print(f"Saved {dataset_name}!")
|
608 |
+
|
609 |
+
|
610 |
+
@dataset_share_button.click(inputs=[dataset_title, search_bar], outputs=[dataset_share_textbox])
|
611 |
+
def show_dataset_url(title, search_query):
|
612 |
+
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
|
613 |
+
dataset_name, tags = dataset_name.strip(), tags.strip()
|
614 |
+
return gr.Textbox(
|
615 |
+
f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}",
|
616 |
+
visible=True,
|
617 |
+
)
|
618 |
+
|
619 |
+
@demo.load(outputs=show_dataset_outputs + button_groups + buttons + [generated_texts_state] + [select_namespace_dropdown, visibility_radio])
|
620 |
+
def load_app(request: gr.Request, oauth_token: Optional[gr.OAuthToken]):
|
621 |
+
if oauth_token:
|
622 |
+
user_info = whoami(oauth_token.token)
|
623 |
+
yield {
|
624 |
+
select_namespace_dropdown: gr.Dropdown(
|
625 |
+
choices=[user_info["name"]] + [org_info["name"] for org_info in user_info["orgs"]],
|
626 |
+
value=user_info["name"],
|
627 |
+
visible=True,
|
628 |
+
),
|
629 |
+
visibility_radio: gr.Radio(interactive=True),
|
630 |
+
}
|
631 |
+
query_params = dict(request.query_params)
|
632 |
+
if "dataset" in query_params:
|
633 |
+
yield from _show_dataset(
|
634 |
+
search_query=query_params.get("q", query_params["dataset"]),
|
635 |
+
dataset_name=query_params["dataset"],
|
636 |
+
tags=query_params.get("tags", "")
|
637 |
)
|
638 |
+
elif "q" in query_params:
|
639 |
+
yield {search_bar: query_params["q"]}
|
640 |
+
yield from _search_datasets(query_params["q"])
|
641 |
+
else:
|
642 |
+
yield {search_page: gr.Column(visible=True)}
|
643 |
+
|
644 |
+
|
645 |
+
demo.launch()
|
646 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|