acecalisto3 commited on
Commit
e96849b
·
verified ·
1 Parent(s): c0311b6

Update supplemental.py

Browse files
Files changed (1) hide show
  1. supplemental.py +200 -168
supplemental.py CHANGED
@@ -1,200 +1,232 @@
1
- from huggingface_hub import HfApi
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
- from typing import List, Dict
4
-
5
- class Agent:
6
- def __init__(self, name, role, tools, knowledge_base=None):
7
- self.name = name
8
- self.role = role
9
- self.tools = tools
10
- self.knowledge_base = knowledge_base
11
- self.memory = []
12
-
13
- def act(self, prompt, context):
14
- self.memory.append((prompt, context))
15
- action = self.choose_action(prompt, context)
16
- return action
17
-
18
- def choose_action(self, prompt, context):
19
- # Placeholder for action selection logic
20
- return {"tool": "Code Generation", "arguments": {"language": "python", "code": "print('Hello, World!')"}}
21
-
22
- def observe(self, observation):
23
- pass
24
-
25
- def learn(self, data):
26
- pass
27
-
28
- def __str__(self):
29
- return f"""Agent: {self.name} (Role: {self.role})"""
30
-
31
- class Tool:
32
- def __init__(self, name, description):
33
  self.name = name
34
  self.description = description
35
 
36
- def run(self, arguments):
37
- return {"output": "Tool Output"}
 
38
 
39
- class CodeGenerationTool(Tool):
40
  def __init__(self):
41
- super().__init__("Code Generation", "Generates code snippets in various languages.")
42
 
43
- def run(self, arguments):
44
- language = arguments.get("language", "python")
45
- code = arguments.get("code", "print('Hello, World!')")
46
- return {"output": f"""```{language}\n{code}\n```"""}
 
 
47
 
48
- class DataRetrievalTool(Tool):
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  def __init__(self):
50
- super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- def run(self, arguments):
53
- source = arguments.get("source", "https://example.com/data")
54
- return {"output": f"""Data from {source}"""}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- class TextGenerationTool(Tool):
57
- def __init__(self):
58
- super().__init__("Text Generation", "Generates human-like text based on a given prompt.")
59
- self.tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
60
- self.model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")
61
 
62
- def run(self, arguments):
63
- prompt = arguments.get("prompt", "Write a short story about a cat.")
64
- inputs = self.tokenizer(prompt, return_tensors="pt")
65
- outputs = self.model.generate(**inputs, max_length=50)
66
- return {"output": self.tokenizer.decode(outputs[0], skip_special_tokens=True)}
67
 
68
- class CodeExecutionTool(Tool):
69
- def __init__(self):
70
- super().__init__("Code Execution", "Runs code snippets in various languages.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
- def run(self, arguments):
73
- code = arguments.get("code", "print('Hello, World!')")
74
- return {"output": f"""Code executed: {code}"""}
75
 
76
- class CodeDebuggingTool(Tool):
77
- def __init__(self):
78
- super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
79
 
80
- def run(self, arguments):
81
- code = arguments.get("code", "print('Hello, World!')")
82
- return {"output": f"""Code debugged: {code}"""}
83
 
84
- class CodeSummarizationTool(Tool):
85
- def __init__(self):
86
- super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
87
 
88
- def run(self, arguments):
89
- code = arguments.get("code", "print('Hello, World!')")
90
- return {"output": f"""Code summary: {code}"""}
91
 
92
- class CodeTranslationTool(Tool):
93
- def __init__(self):
94
- super().__init__("Code Translation", "Translates code snippets between different programming languages.")
 
 
95
 
96
- def run(self, arguments):
97
- code = arguments.get("code", "print('Hello, World!')")
98
- return {"output": f"""Translated code: {code}"""}
99
 
100
- class CodeOptimizationTool(Tool):
101
- def __init__(self):
102
- super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
103
 
104
- def run(self, arguments):
105
- code = arguments.get("code", "print('Hello, World!')")
106
- return {"output": f"""Optimized code: {code}"""}
107
 
108
- class CodeDocumentationTool(Tool):
109
- def __init__(self):
110
- super().__init__("Code Documentation", "Generates documentation for code snippets.")
 
111
 
112
- def run(self, arguments):
113
- code = arguments.get("code", "print('Hello, World!')")
114
- return {"output": f"""Code documentation: {code}"""}
115
 
116
- class ImageGenerationTool(Tool):
117
- def __init__(self):
118
- super().__init__("Image Generation", "Generates images based on text descriptions.")
119
 
120
- def run(self, arguments):
121
- description = arguments.get("description", "A cat sitting on a couch")
122
- return {"output": f"""Generated image based on: {description}"""}
123
 
124
- class ImageEditingTool(Tool):
125
- def __init__(self):
126
- super().__init__("Image Editing", "Modifying existing images.")
 
 
127
 
128
- def run(self, arguments):
129
- image_path = arguments.get("image_path", "path/to/image.jpg")
130
- return {"output": f"""Image edited: {image_path}"""}
131
 
132
- class ImageAnalysisTool(Tool):
133
- def __init__(self):
134
- super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
135
 
136
- def run(self, arguments):
137
- image_path = arguments.get("image_path", "path/to/image.jpg")
138
- return {"output": f"""Image analysis results: {image_path}"""}
139
 
140
- class EnhancedAIAgent(Agent):
141
- def __init__(self, name: str, description: str, skills: List[str], llm: str):
142
- super().__init__(name, description, skills)
143
- self.text_gen_tool = TextGenerationTool()
144
- self._hf_api = HfApi() # Initialize HfApi here
145
 
146
- def generate_agent_response(self, prompt: str) -> str:
147
- return self.text_gen_tool.run({"prompt": prompt})
148
-
149
- def create_agent_prompt(self) -> str:
150
- skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
151
- agent_prompt = f"""
152
- As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
153
- {skills_str}
154
- I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
155
  """
156
- return agent_prompt
157
-
158
- def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict],
159
- project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
160
- summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
161
- next_step = "Based on the current state, the next logical step is to implement the main application logic."
162
- return summary, next_step
163
-
164
- def deploy_built_space_to_hf(self, project_name: str) -> str:
165
- # Assuming you have a function that generates the space content
166
- space_content = generate_space_content(project_name)
167
- repository = self._hf_api.create_repo(
168
- repo_id=project_name,
169
- private=True,
170
- token=hf_token,
171
- exist_ok=True,
172
- space_sdk="streamlit"
173
- )
174
- self._hf_api.upload_file(
175
- path_or_fileobj=space_content,
176
- path_in_repo="app.py",
177
- repo_id=project_name,
178
- repo_type="space",
179
- token=hf_token
180
- )
181
- return repository.name
182
-
183
- def has_valid_hf_token(self) -> bool:
184
- return self._hf_api.whoami(token=hf_token) is not None
185
-
186
- def generate_space_content(project_name: str) -> str:
187
- # Logic to generate the Streamlit app content based on project_name
188
- return f"""
189
- import streamlit as st
190
-
191
- st.title('{project_name}')
192
- st.write('Hello, world!')
193
- """
194
-
195
- # Example usage within your Streamlit app
196
- if __name__ == "__main__":
197
- llm = "bigcode/starcoder"
198
- agent = EnhancedAIAgent(name="AI Assistant", description="Expert in code generation", skills=["Python", "Streamlit"], llm=llm)
199
- response = agent.generate_agent_response("How can I help you today?")
200
- print(response)
 
1
+ import os
2
+ import json
3
+ import logging
4
+ from typing import List, Dict, Tuple, Optional, Any
5
+ from dataclasses import dataclass
6
+ from abc import ABC, abstractmethod
7
+ from huggingface_hub import HfApi, InferenceApi
8
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
9
+
10
+ @dataclass
11
+ class ProjectConfig:
12
+ name: str
13
+ description: str
14
+ technologies: List[str]
15
+ structure: Dict[str, List[str]]
16
+
17
+ class WebDevelopmentTool(ABC):
18
+ def __init__(self, name: str, description: str):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  self.name = name
20
  self.description = description
21
 
22
+ @abstractmethod
23
+ def generate_code(self, *args, **kwargs):
24
+ pass
25
 
26
+ class HTMLGenerator(WebDevelopmentTool):
27
  def __init__(self):
28
+ super().__init__("HTML Generator", "Generates HTML code for web pages")
29
 
30
+ def generate_code(self, structure: Dict[str, Any]) -> str:
31
+ html = "<html><body>"
32
+ for tag, content in structure.items():
33
+ html += f"<{tag}>{content}</{tag}>"
34
+ html += "</body></html>"
35
+ return html
36
 
37
+ class CSSGenerator(WebDevelopmentTool):
38
+ def __init__(self):
39
+ super().__init__("CSS Generator", "Generates CSS code for styling web pages")
40
+
41
+ def generate_code(self, styles: Dict[str, Dict[str, str]]) -> str:
42
+ css = ""
43
+ for selector, properties in styles.items():
44
+ css += f"{selector} {{\n"
45
+ for prop, value in properties.items():
46
+ css += f" {prop}: {value};\n"
47
+ css += "}\n"
48
+ return css
49
+
50
+ class JavaScriptGenerator(WebDevelopmentTool):
51
  def __init__(self):
52
+ super().__init__("JavaScript Generator", "Generates JavaScript code for web functionality")
53
+
54
+ def generate_code(self, functions: List[Dict[str, Any]]) -> str:
55
+ js = ""
56
+ for func in functions:
57
+ js += f"function {func['name']}({', '.join(func['params'])}) {{\n"
58
+ js += f" {func['body']}\n"
59
+ js += "}\n\n"
60
+ return js
61
+
62
+ class EnhancedAIAgent:
63
+ def __init__(self, name: str, description: str, skills: List[str], model_name: str):
64
+ self.name = name
65
+ self.description = description
66
+ self.skills = skills
67
+ self.model_name = model_name
68
+ self.html_gen_tool = HTMLGenerator()
69
+ self.css_gen_tool = CSSGenerator()
70
+ self.js_gen_tool = JavaScriptGenerator()
71
+ self.hf_api = HfApi()
72
+ self.inference_api = InferenceApi(repo_id=model_name, token=os.environ.get("HF_API_TOKEN"))
73
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
74
+ self.model = AutoModelForCausalLM.from_pretrained(model_name)
75
+ self.text_generation = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
76
+ self.logger = logging.getLogger(__name__)
77
 
78
+ def generate_agent_response(self, prompt: str) -> str:
79
+ try:
80
+ response = self.inference_api(prompt)
81
+ return response[0]['generated_text']
82
+ except Exception as e:
83
+ self.logger.error(f"Error generating response: {str(e)}")
84
+ return f"Error: Unable to generate response. {str(e)}"
85
+
86
+ def create_project_structure(self, project_config: ProjectConfig) -> Dict[str, str]:
87
+ project_files = {}
88
+ for directory, files in project_config.structure.items():
89
+ for file in files:
90
+ file_path = os.path.join(directory, file)
91
+ if file.endswith('.html'):
92
+ content = self.html_gen_tool.generate_code({"body": f"<h1>{project_config.name}</h1>"})
93
+ elif file.endswith('.css'):
94
+ content = self.css_gen_tool.generate_code({"body": {"font-family": "Arial, sans-serif"}})
95
+ elif file.endswith('.js'):
96
+ content = self.js_gen_tool.generate_code([{"name": "init", "params": [], "body": "console.log('Initialized');"}])
97
+ else:
98
+ content = f"// TODO: Implement {file}"
99
+ project_files[file_path] = content
100
+ return project_files
101
+
102
+ def generate_project_config(self, project_description: str) -> ProjectConfig:
103
+ prompt = f"""
104
+ Based on the following project description, generate a ProjectConfig object:
105
+
106
+ Description: {project_description}
107
+
108
+ The ProjectConfig should include:
109
+ - name: A short, descriptive name for the project
110
+ - description: A brief summary of the project
111
+ - technologies: A list of technologies to be used (e.g., ["HTML", "CSS", "JavaScript", "React"])
112
+ - structure: A dictionary representing the file structure, where keys are directories and values are lists of files
113
+
114
+ Respond with a JSON object representing the ProjectConfig.
115
+ """
116
+ response = self.generate_agent_response(prompt)
117
+ config_dict = json.loads(response)
118
+ return ProjectConfig(**config_dict)
119
 
120
+ def implement_feature(self, feature_description: str, existing_code: Optional[str] = None) -> str:
121
+ prompt = f"""
122
+ Feature to implement: {feature_description}
 
 
123
 
124
+ Existing code:
125
+ ```
126
+ {existing_code if existing_code else 'No existing code provided.'}
127
+ ```
 
128
 
129
+ Please implement the described feature, modifying the existing code if provided.
130
+ Respond with only the code, no explanations.
131
+ """
132
+ return self.generate_agent_response(prompt)
133
+
134
+ def review_code(self, code: str) -> str:
135
+ prompt = f"""
136
+ Please review the following code and provide feedback:
137
+
138
+ ```
139
+ {code}
140
+ ```
141
+
142
+ Consider the following aspects in your review:
143
+ 1. Code quality and readability
144
+ 2. Potential bugs or errors
145
+ 3. Adherence to best practices
146
+ 4. Suggestions for improvement
147
+ Provide your feedback in a structured format.
148
+ """
149
+ return self.generate_agent_response(prompt)
150
 
151
+ def optimize_code(self, code: str, optimization_goal: str) -> str:
152
+ prompt = f"""
153
+ Please optimize the following code with the goal of improving {optimization_goal}:
154
 
155
+ ```
156
+ {code}
157
+ ```
158
 
159
+ Provide only the optimized code in your response, no explanations.
160
+ """
161
+ return self.generate_agent_response(prompt)
162
 
163
+ def generate_documentation(self, code: str) -> str:
164
+ prompt = f"""
165
+ Please generate comprehensive documentation for the following code:
166
 
167
+ ```
168
+ {code}
169
+ ```
170
 
171
+ Include the following in your documentation:
172
+ 1. Overview of the code's purpose
173
+ 2. Description of functions/classes and their parameters
174
+ 3. Usage examples
175
+ 4. Any important notes or considerations
176
 
177
+ Provide the documentation in Markdown format.
178
+ """
179
+ return self.generate_agent_response(prompt)
180
 
181
+ def suggest_tests(self, code: str) -> str:
182
+ prompt = f"""
183
+ Please suggest unit tests for the following code:
184
 
185
+ ```
186
+ {code}
187
+ ```
188
 
189
+ For each function or class, provide:
190
+ 1. Test case description
191
+ 2. Input values
192
+ 3. Expected output or behavior
193
 
194
+ Provide the suggestions in a structured format.
195
+ """
196
+ return self.generate_agent_response(prompt)
197
 
198
+ def explain_code(self, code: str) -> str:
199
+ prompt = f"""
200
+ Please provide a detailed explanation of the following code:
201
 
202
+ ```
203
+ {code}
204
+ ```
205
 
206
+ Include in your explanation:
207
+ 1. Overall purpose of the code
208
+ 2. Breakdown of each significant part
209
+ 3. How different components interact
210
+ 4. Any notable algorithms or design patterns used
211
 
212
+ Explain in a way that would be understandable to a junior developer.
213
+ """
214
+ return self.generate_agent_response(prompt)
215
 
216
+ def suggest_refactoring(self, code: str) -> str:
217
+ prompt = f"""
218
+ Please suggest refactoring improvements for the following code:
219
 
220
+ ```
221
+ {code}
222
+ ```
223
 
224
+ Consider the following in your suggestions:
225
+ 1. Improving code readability
226
+ 2. Enhancing maintainability
227
+ 3. Applying design patterns where appropriate
228
+ 4. Optimizing performance (if applicable)
229
 
230
+ Provide specific suggestions and explain the benefits of each.
 
 
 
 
 
 
 
 
231
  """
232
+ return self.generate_agent_response(prompt)