File size: 4,116 Bytes
1996459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1dd5d
1996459
 
 
5c1dd5d
 
1996459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb4143
 
 
 
1996459
 
 
 
 
 
2d16d5e
5c1dd5d
1996459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1dd5d
1996459
5c1dd5d
1996459
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# This is to demonstrate the core logic for the project

# 1. Get the link to PDF
# 2. Read the content of the PDF
# 3. Iterate:
#    3.1 Create a chunk (set of pages)
#    3.2 Create summary by combining partial summary & chunk


### 1. Import the libraries
import streamlit as st
import time
import os
from dotenv import load_dotenv

from langchain.prompts import PromptTemplate

# from langchain_community.llms import HuggingFaceHub
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.document_loaders import PyPDFLoader

# This is to simplify local development
# Without this you will need to copy/paste the API key with every change
try:
    # CHANGE the location of the file
    load_dotenv('C:\\Users\\raj\\.jupyter\\.env1')
    # Add the API key to the session - use it for populating the interface
    if os.getenv('HUGGINGFACEHUB_API_TOKEN'):
        st.session_state['HUGGINGFACEHUB_API_TOKEN'] = os.getenv('HUGGINGFACEHUB_API_TOKEN')
    else:
        st.session_state['HUGGINGFACEHUB_API_TOKEN'] = ''
except:
    print("Environment file not found !! Copy & paste your HuggingFace API key.")


# Prompt to be used
template = """
    extend the abstractive summary below with the new content. Keep total size of the extended summary around 3000 words.

    summary: 
    {summary}

    new content:
    {content}

    extended summary:
    
"""

prompt_template = PromptTemplate(
    input_variables = ['summary', 'content'],
    template = template
)

# Model for summarization
model_id = 'mistralai/Mistral-7B-Instruct-v0.2'
CONTEXT_WINDOW_SIZE=32000
MAX_TOKENS=2000


if 'SUMMARY' not in st.session_state:
    st.session_state['SUMMARY'] = ''

if 'HUGGINGFACEHUB_API_TOKEN' not in st.session_state:
    st.session_state['HUGGINGFACEHUB_API_TOKEN'] = ''


# function to generate the summary
def generate_summary():
    
    # Create an LLM
    llm = HuggingFaceEndpoint(
        repo_id=model_id, 
        max_new_tokens=MAX_TOKENS,
        huggingfacehub_api_token = hugging_face_api_key
    )

    # Show spinner, while we are waiting for the response
    with st.spinner('Invoking LLM ... '):
        # 1. Load the PDF file
        partial_summary = ''
        loader = PyPDFLoader(pdf_link)
        pages = loader.load()
        page_count = len(pages)
        print("Number of pages = ", page_count)

        # 2. Iterate to generate the summary
        
        next_page_index = 0
        while next_page_index < len(pages):
            'Processing chunk, starting with page index : ',next_page_index

            # Holds the chunk = a set of contenated pages
            new_content = ''
            
            # Loop to create chunk 
            for i, doc in enumerate(pages[next_page_index : ]):
                last_i = i
                if len(partial_summary) + len(new_content) + len(doc.page_content) + MAX_TOKENS < CONTEXT_WINDOW_SIZE :
                    new_content = new_content + doc.page_content
                else:
                    break
                    
            # Initialize the new content and next page index
            next_page_index = next_page_index + last_i + 1
                
            # Pass the current summary and new content to LLM for summarization
            query = prompt_template.format(summary=partial_summary, content=new_content)
            
            

            partial_summary = llm.invoke(query)
        st.session_state['SUMMARY'] = partial_summary
        

# Title
st.title('PDF Summarizer')

if 'HUGGINGFACEHUB_API_TOKEN' in st.session_state:
    hugging_face_api_key = st.sidebar.text_input('HuggingFace API key',value=st.session_state['HUGGINGFACEHUB_API_TOKEN'])
else:
    hugging_face_api_key = st.sidebar.text_input('HuggingFace API key',placeholder='copy & paste your API key')


# draw the box for query
pdf_link = st.text_input('Link to PDF document', placeholder='copy/paste link to the PDF', value='https://sgp.fas.org/crs/misc/R47644.pdf')

# button
st.button("Generate sumary", on_click=generate_summary)


st.text_area('Response', value = st.session_state['SUMMARY'], height=800)