Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Manages user & assistant messages in the session state.
|
2 |
+
|
3 |
+
### 1. Import the libraries
|
4 |
+
import streamlit as st
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
# https://api.python.langchain.com/en/latest/llms/langchain_community.llms.cohere.Cohere.html#langchain_community.llms.cohere.Cohere
|
11 |
+
from langchain_community.llms import Cohere
|
12 |
+
|
13 |
+
### 2. Setup datastructure for holding the messages
|
14 |
+
# Define a Message class for holding the query/response
|
15 |
+
@dataclass
|
16 |
+
class Message:
|
17 |
+
role: str # identifies the actor (system, user or human, assistant or ai)
|
18 |
+
payload: str # instructions, query, response
|
19 |
+
|
20 |
+
# Streamlit knows about the common roles as a result, it is able to display the icons
|
21 |
+
USER = "user" # or human,
|
22 |
+
ASSISTANT = "assistant" # or ai,
|
23 |
+
SYSTEM = "system"
|
24 |
+
|
25 |
+
# This is to simplify local development
|
26 |
+
# Without this you will need to copy/paste the API key with every change
|
27 |
+
try:
|
28 |
+
# CHANGE the location of the file
|
29 |
+
load_dotenv('C:\\Users\\raj\\.jupyter\\.env')
|
30 |
+
# Add the API key to the session - use it for populating the interface
|
31 |
+
if os.getenv('COHERE_API_KEY'):
|
32 |
+
st.session_state['COHERE_API_KEY'] = os.getenv('COHERE_API_KEY')
|
33 |
+
except:
|
34 |
+
print("Environment file not found !! Copy & paste your Cohere API key.")
|
35 |
+
|
36 |
+
|
37 |
+
### 3. Initialize the datastructure to hold the context
|
38 |
+
MESSAGES='messages'
|
39 |
+
if MESSAGES not in st.session_state:
|
40 |
+
system_message = Message(role=SYSTEM, payload='you are a polite assistant named "Ruby".')
|
41 |
+
st.session_state[MESSAGES] = [system_message]
|
42 |
+
|
43 |
+
### 4. Setup the title & input text element for the Cohere API key
|
44 |
+
# Set the title
|
45 |
+
# Populate API key from session if it is available
|
46 |
+
st.title("Multi-Turn conversation interface !!!")
|
47 |
+
|
48 |
+
# If the key is already available, initialize its value on the UI
|
49 |
+
if 'COHERE_API_KEY' in st.session_state:
|
50 |
+
cohere_api_key = st.sidebar.text_input('Cohere API key',value=st.session_state['COHERE_API_KEY'])
|
51 |
+
else:
|
52 |
+
cohere_api_key = st.sidebar.text_input('Cohere API key',placeholder='copy & paste your API key')
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
### 5. Define utility functions to invoke the LLM
|
58 |
+
|
59 |
+
# Create an instance of the LLM
|
60 |
+
@st.cache_resource
|
61 |
+
def get_llm():
|
62 |
+
return Cohere(model="command", cohere_api_key=cohere_api_key)
|
63 |
+
|
64 |
+
# Create the context by concatenating the messages
|
65 |
+
def get_chat_context():
|
66 |
+
context = ''
|
67 |
+
for msg in st.session_state[MESSAGES]:
|
68 |
+
context = context + '\n\n' + msg.role + ':' + msg.payload
|
69 |
+
return context
|
70 |
+
|
71 |
+
# Generate the response and return
|
72 |
+
def get_llm_response(prompt):
|
73 |
+
llm = get_llm()
|
74 |
+
|
75 |
+
# Show spinner, while we are waiting for the response
|
76 |
+
with st.spinner('Invoking LLM ... '):
|
77 |
+
# get the context
|
78 |
+
chat_context = get_chat_context()
|
79 |
+
|
80 |
+
# Prefix the query with context
|
81 |
+
query_payload = chat_context +'\n\n Question: ' + prompt
|
82 |
+
|
83 |
+
response = llm.invoke(query_payload)
|
84 |
+
|
85 |
+
return response
|
86 |
+
|
87 |
+
### 6. Write the messages to chat_message container
|
88 |
+
# Write messages to the chat_message element
|
89 |
+
# This is needed as streamlit re-runs the entire script when user provides input in a widget
|
90 |
+
# https://docs.streamlit.io/develop/api-reference/chat/st.chat_message
|
91 |
+
for msg in st.session_state[MESSAGES]:
|
92 |
+
st.chat_message(msg.role).write(msg.payload)
|
93 |
+
|
94 |
+
### 7. Create the *chat_input* element to get the user query
|
95 |
+
# Interface for user input
|
96 |
+
prompt = st.chat_input(placeholder='Your input here')
|
97 |
+
|
98 |
+
### 8. Process the query received from user
|
99 |
+
if prompt:
|
100 |
+
# create user message and add to end of messages in the session
|
101 |
+
user_message = Message(role=USER, payload=prompt)
|
102 |
+
st.session_state[MESSAGES].append(user_message)
|
103 |
+
|
104 |
+
# Write the user prompt as chat message
|
105 |
+
st.chat_message(USER).write(prompt)
|
106 |
+
|
107 |
+
# Invoke the LLM
|
108 |
+
response = get_llm_response(prompt)
|
109 |
+
|
110 |
+
# Create message object representing the response
|
111 |
+
assistant_message = Message(role=ASSISTANT, payload=response)
|
112 |
+
|
113 |
+
# Add the response message to the mesages array in the session
|
114 |
+
st.session_state[MESSAGES].append(assistant_message)
|
115 |
+
|
116 |
+
# Write the response as chat_message
|
117 |
+
st.chat_message(ASSISTANT).write(response)
|
118 |
+
|
119 |
+
### 9. Write out the current content of the context
|
120 |
+
st.divider()
|
121 |
+
st.subheader('st.session_state[MESSAGES] dump:')
|
122 |
+
|
123 |
+
# Print the state of the buffer
|
124 |
+
for msg in st.session_state[MESSAGES]:
|
125 |
+
st.text(msg.role + ' : ' + msg.payload)
|