# Manages user & assistant messages in the session state. ### 1. Import the libraries import streamlit as st import time import os from dataclasses import dataclass from dotenv import load_dotenv # https://api.python.langchain.com/en/latest/llms/langchain_community.llms.cohere.Cohere.html#langchain_community.llms.cohere.Cohere from langchain_community.llms import Cohere ### 2. Setup datastructure for holding the messages # Define a Message class for holding the query/response @dataclass class Message: role: str # identifies the actor (system, user or human, assistant or ai) payload: str # instructions, query, response # Streamlit knows about the common roles as a result, it is able to display the icons USER = "user" # or human, ASSISTANT = "assistant" # or ai, SYSTEM = "system" # This is to simplify local development # Without this you will need to copy/paste the API key with every change try: # CHANGE the location of the file load_dotenv('C:\\Users\\raj\\.jupyter\\.env') # Add the API key to the session - use it for populating the interface if os.getenv('COHERE_API_KEY'): st.session_state['COHERE_API_KEY'] = os.getenv('COHERE_API_KEY') except: print("Environment file not found !! Copy & paste your Cohere API key.") ### 3. Initialize the datastructure to hold the context MESSAGES='messages' if MESSAGES not in st.session_state: system_message = Message(role=SYSTEM, payload='you are a polite assistant named "Ruby".') st.session_state[MESSAGES] = [system_message] ### 4. Setup the title & input text element for the Cohere API key # Set the title # Populate API key from session if it is available st.title("Multi-Turn conversation interface !!!") # If the key is already available, initialize its value on the UI if 'COHERE_API_KEY' in st.session_state: cohere_api_key = st.sidebar.text_input('Cohere API key',value=st.session_state['COHERE_API_KEY']) else: cohere_api_key = st.sidebar.text_input('Cohere API key',placeholder='copy & paste your API key') ### 5. Define utility functions to invoke the LLM # Create an instance of the LLM @st.cache_resource def get_llm(): return Cohere(model="command", cohere_api_key=cohere_api_key) # Create the context by concatenating the messages def get_chat_context(): context = '' for msg in st.session_state[MESSAGES]: context = context + '\n\n' + msg.role + ':' + msg.payload return context # Generate the response and return def get_llm_response(prompt): llm = get_llm() # Show spinner, while we are waiting for the response with st.spinner('Invoking LLM ... '): # get the context chat_context = get_chat_context() # Prefix the query with context query_payload = chat_context +'\n\n Question: ' + prompt response = llm.invoke(query_payload) return response ### 6. Write the messages to chat_message container # Write messages to the chat_message element # This is needed as streamlit re-runs the entire script when user provides input in a widget # https://docs.streamlit.io/develop/api-reference/chat/st.chat_message for msg in st.session_state[MESSAGES]: st.chat_message(msg.role).write(msg.payload) ### 7. Create the *chat_input* element to get the user query # Interface for user input prompt = st.chat_input(placeholder='Your input here') ### 8. Process the query received from user if prompt: # create user message and add to end of messages in the session user_message = Message(role=USER, payload=prompt) st.session_state[MESSAGES].append(user_message) # Write the user prompt as chat message st.chat_message(USER).write(prompt) # Invoke the LLM response = get_llm_response(prompt) # Create message object representing the response assistant_message = Message(role=ASSISTANT, payload=response) # Add the response message to the mesages array in the session st.session_state[MESSAGES].append(assistant_message) # Write the response as chat_message st.chat_message(ASSISTANT).write(response) ### 9. Write out the current content of the context st.divider() st.subheader('st.session_state[MESSAGES] dump:') # Print the state of the buffer for msg in st.session_state[MESSAGES]: st.text(msg.role + ' : ' + msg.payload)