Spaces:
Running
Running
File size: 16,416 Bytes
f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 a3c9adb f856f17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import gradio as gr
import torch
import transformers
import time
from safetensors.torch import save_file, load_file
import tempfile
from io import BytesIO
import logging
# Add a dropdown to select the model
model_options = [
"openai-community/gpt2",
"google/gemma-3-1b-it",
"meta-llama/Llama-3.2-1B",
"EleutherAI/pythia-160m",
"EleutherAI/pythia-14m",
]
def load_model_and_tokenizer(model_name):
"""
Load the tokenizer and model based on the selected model name.
Parameters:
model_name (str): The name of the model to load.
Returns:
tuple: The loaded tokenizer and model.
"""
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
def get_embeddings(
input_ids: torch.Tensor, model: transformers.PreTrainedModel
) -> torch.Tensor:
"""
Get the embeddings for the input IDs.
Parameters:
input_ids (torch.Tensor): The input IDs for which to get the embeddings.
model (transformers.PreTrainedModel): The model to use for generating embeddings.
Returns:
torch.Tensor: The embeddings for the input IDs.
"""
return model.get_input_embeddings()(input_ids).detach()
def optimize_simon_says_prompt(
input_text: str,
number_of_simon_says_tokens: int,
n_steps: int,
lr: float,
model: transformers.PreTrainedModel,
tokenizer: transformers.PreTrainedTokenizer,
add_eos_token: bool,
progress=gr.Progress(track_tqdm=False), # Gradio progress tracking
) -> tuple[str, torch.Tensor]:
"""
Optimize a Simon Says prompt based on the input text and display the optimization process.
Parameters:
input_text (str): The input text provided by the user.
number_of_simon_says_tokens (int): Number of Simon Says tokens to optimize.
n_steps (int): Number of optimization steps.
lr (float): Learning rate for the optimization process.
model (transformers.PreTrainedModel): The model to use for optimization.
tokenizer (transformers.PreTrainedTokenizer): The tokenizer to use for tokenization.
add_eos_token (bool): Whether to add an EOS token to the input text.
progress (gr.Progress): Gradio progress tracking.
Returns:
The optimized Simon Says prompt
"""
torch.manual_seed(42) # Set a random seed for reproducibility
# Check if the EOS token checkbox is selected
if add_eos_token:
# We could've also used the tokenizer.eos_token_id, but this is easier because we don't need to potentially handle padding attention masks, batching issues, etc.
input_text += tokenizer.eos_token
# Tokenize the input text
tokens = tokenizer(
input_text,
return_tensors="pt",
padding=False,
truncation=True,
add_special_tokens=False,
)
embeddings = get_embeddings(tokens["input_ids"], model)
# Initialize a random Simon Says prompt
simon_says_prompt = torch.randn(
1, number_of_simon_says_tokens, embeddings.size(-1), requires_grad=True
)
dummy_prompt = torch.zeros_like(
simon_says_prompt[..., 0:1, :], requires_grad=False
) # Add an extra dimension
attention_mask = torch.ones_like(
torch.cat([dummy_prompt, simon_says_prompt, embeddings], dim=1)[:, :, 0],
device=simon_says_prompt.device,
requires_grad=False,
)
# Set the first token to 0 in the attention mask
attention_mask[:, 0] = 0
optimizer = torch.optim.Adam([simon_says_prompt], lr=lr)
best_loss: float = float("inf")
best_simon_says_prompt: torch.Tensor = None
progress(0, desc="Starting optimization...")
time.sleep(1)
for step in range(n_steps):
optimizer.zero_grad()
expanded_prompt = torch.cat(
[dummy_prompt, simon_says_prompt, embeddings], dim=1
)
logits = model(
inputs_embeds=expanded_prompt, attention_mask=attention_mask
).logits
probs = torch.softmax(logits[:, -embeddings.size(-2) - 1 : -1], dim=-1)
ranks = (
torch.sum(
probs > probs.gather(2, tokens["input_ids"].unsqueeze(-1)), dim=-1
)
+ 1
)
# If all ranks are 1, stop the optimization (perfect prediction)
if torch.all(ranks == 1):
best_simon_says_prompt = simon_says_prompt.detach().clone()
break
loss = torch.functional.F.cross_entropy(
input=logits[:, -embeddings.size(-2) - 1 : -1].reshape(-1, logits.size(-1)),
target=tokens["input_ids"].reshape(-1),
reduction="none",
)
# Multiply the loss by the ranks to give more weight to the tokens with higher ranks - this is to speed up the optimization process and avoid getting stuck in local minima
# Weights should be between 0 and 1 - we can normalize the ranks to get weights and then apply softmax to get the final weights as a more stable distribution
token_weights = ranks.float() / ranks.float().max()
print(f"Token Ranks: {ranks}")
print(f"Token Weights: {token_weights}")
loss = loss * token_weights.reshape(-1)
loss = loss.mean()
loss.backward()
optimizer.step()
avg_rank = ranks.float().mean().item()
progress(
step / n_steps,
desc=f"Step {step}, Loss: {loss.item():.4f}, Avg Rank: {avg_rank:.2f}, Max Rank: {ranks.max().item()}",
)
logging.info(
f"Step {step}, Loss: {loss.item():.4f}, Avg Rank: {avg_rank:.2f}, Max Rank: {ranks.max().item()}"
)
if loss.item() < best_loss:
best_loss = loss.item()
best_simon_says_prompt = simon_says_prompt.detach().clone()
else:
# Show a Gradio warning saying that the optimization did not converge
gr.Warning(
"The optimization did not converge. The prompt will not generate the expected output."
)
return best_simon_says_prompt
def download_tensor(tensor):
"""
Save a tensor to a safetensors file for download.
Parameters:
tensor (torch.Tensor): The tensor to be saved.
Returns:
str: The file path of the saved tensor.
"""
file_path = "optimized_tensor.safetensors"
save_file({"optimized_tensor": tensor}, file_path)
return file_path
def upload_tensor(file):
"""
Load a tensor from an uploaded safetensors file.
Parameters:
file (bytes): The uploaded file containing the safetensors data.
Returns:
torch.Tensor: The loaded tensor.
Raises:
ValueError: If the safetensors file is invalid or the header is too large.
"""
if isinstance(file, bytes):
file = BytesIO(file) # Wrap bytes in a BytesIO object
with tempfile.NamedTemporaryFile(delete=True) as temp_file:
temp_file.write(
file.read()
) # Directly write the BytesIO content to the temporary file
temp_file.flush()
try:
tensor_data = load_file(temp_file.name)
except Exception as e:
raise ValueError(f"Failed to load safetensors file: {e}")
if "optimized_tensor" not in tensor_data:
raise ValueError(
"The safetensors file does not contain the expected 'optimized_tensor' key."
)
return tensor_data["optimized_tensor"]
@torch.inference_mode()
def greedy_decode_with_simon_says_prompt(
simon_says_prompt: torch.Tensor,
model: transformers.PreTrainedModel,
tokenizer: transformers.PreTrainedTokenizer,
progress=gr.Progress(),
) -> str:
"""
Perform greedy decoding using an uploaded optimized tensor and input text.
Parameters:
simon_says_prompt (torch.Tensor): The uploaded optimized tensor.
model (transformers.PreTrainedModel): The model to use for decoding.
tokenizer (transformers.PreTrainedTokenizer): The tokenizer to use for decoding.
progress (gr.Progress): Gradio progress tracking.
Returns:
str: The generated text.
"""
generated_tokens = []
all_logits = []
progress(0, desc="Starting greedy decoding...")
# Add an extra dimension with all 0s to the start of the prompt - this is just a bugfix because GPT-2 can't handle a prompt of size 1 (still investigating why)
dummy_prompt = torch.zeros_like(
simon_says_prompt[..., 0:1, :]
) # Add an extra dimension
simon_says_prompt_with_dummy = torch.cat(
[
dummy_prompt,
simon_says_prompt,
],
dim=1,
)
for i in progress.tqdm(range(100), desc="Decoding..."):
if len(generated_tokens) == 0:
expanded_prompt = simon_says_prompt_with_dummy
else:
expanded_prompt = torch.cat(
[
simon_says_prompt_with_dummy,
get_embeddings(
torch.tensor(
generated_tokens, device=simon_says_prompt.device
).unsqueeze(0),
model,
),
],
dim=1,
)
attention_mask = torch.ones_like(
expanded_prompt[:, :, 0], device=simon_says_prompt.device
)
# Set the first token to 0 in the attention mask
attention_mask[:, 0] = 0
logits = model(
inputs_embeds=expanded_prompt,
attention_mask=attention_mask,
).logits
next_token_logits = logits[0, -1, :]
next_token = next_token_logits.argmax().item()
logging.info(
f"Step {i}, Next Token: {next_token}, Logit: {next_token_logits[next_token].item()}"
)
generated_tokens.append(next_token)
all_logits.append(next_token_logits)
if next_token == tokenizer.eos_token_id:
break
generated_tokens = torch.tensor(generated_tokens)
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text
def process_and_generate(
input_text: str,
number_of_simon_says_tokens: int,
n_steps: int,
lr: float,
model_name: str,
add_eos_token: bool,
) -> tuple[str, str]:
"""
Optimize the Simon Says prompt, display the optimization process, and generate text based on the input text.
Parameters:
input_text (str): The input text provided by the user.
number_of_simon_says_tokens (int): Number of Simon Says tokens to optimize.
n_steps (int): Number of optimization steps.
lr (float): Learning rate for the optimization process.
model_name (str): The name of the model to load.
add_eos_token (bool): Whether to add an EOS token to the input text.
Returns:
tuple: The optimized Simon Says prompt and the greedy-decoded text.
"""
tokenizer, model = load_model_and_tokenizer(model_name)
optimized_prompt = optimize_simon_says_prompt(
input_text=input_text,
number_of_simon_says_tokens=number_of_simon_says_tokens,
n_steps=n_steps,
lr=lr,
model=model,
tokenizer=tokenizer,
add_eos_token=add_eos_token,
)
# Generate text using the optimized prompt
generated_text: str = greedy_decode_with_simon_says_prompt(
optimized_prompt, model, tokenizer
)
return (
generated_text,
download_tensor(optimized_prompt),
) # Return the optimized tensor for download
def process_with_uploaded_tensor(
input_text: str, uploaded_tensor: torch.Tensor, model_name: str
) -> tuple[str, str]:
"""
Process the uploaded tensor and generate text based on the input text.
Parameters:
input_text (str): The input text provided by the user.
uploaded_tensor (torch.Tensor): The uploaded optimized tensor.
model_name (str): The name of the model to load.
Returns:
tuple: The generated text and the file path of the uploaded tensor.
"""
tokenizer, model = load_model_and_tokenizer(model_name)
generated_text = greedy_decode_with_simon_says_prompt(
uploaded_tensor, model, tokenizer
)
return generated_text, None
theme = gr.themes.Soft(
primary_hue="fuchsia",
secondary_hue="cyan",
neutral_hue="gray",
radius_size="none",
font=[
gr.themes.GoogleFont("IBM Plex Sans"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
font_mono=[
gr.themes.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"Consolas",
"monospace",
],
)
# Update the Gradio interface to include the model selection dropdown
demo = gr.Interface(
theme=theme,
title="Simon Says Prompt Optimization and Text Generation",
fn=lambda input_text, model_name, number_of_simon_says_tokens, n_steps, lr, add_eos_token, uploaded_file: (
process_with_uploaded_tensor(
input_text, upload_tensor(uploaded_file), model_name
)
if uploaded_file
else process_and_generate(
input_text,
number_of_simon_says_tokens,
n_steps,
lr,
model_name,
add_eos_token,
)
),
inputs=[
gr.Textbox(
lines=5,
placeholder="Enter your text here...",
label="Input Text",
value="Hello world! I'm Aldan, happy to be here.",
info="Provide the text for which you want to optimize the Simon Says prompt. This text will be used as the target for generating the Simon Says Prompt.",
),
gr.Dropdown(
choices=model_options,
value="EleutherAI/pythia-160m",
label="Select Model",
interactive=True,
info="Choose a pre-trained language model to use for optimization and text generation. Each model has different capabilities and sizes.",
),
gr.Slider(
minimum=1,
maximum=10,
step=1,
value=4,
label="Number of Simon Says Prompt Tokens",
info="Specify the number of tokens to include in the Simon Says prompt. Bigger sizes may make it easier to optimize, but they take up more space.",
),
gr.Slider(
minimum=100,
maximum=10000,
step=100,
value=10000,
label="Patience",
info="Set the maximum number of steps for the optimization process. It will stop early if the optimization converges before reaching this number, but if it reaches the limit, it will stop without converging.",
),
gr.Slider(
minimum=1e-5,
maximum=1e-1,
step=1e-5,
value=1e-1,
label="Learning Rate",
info="Adjust the learning rate for the optimization algorithm. This controls how quickly the optimization converges but can also lead to instability if set too high.",
),
gr.Checkbox(
label="Add EOS Token",
value=False,
interactive=True,
info="Enable this option to append an End-Of-Sequence (EOS) token to the input text. This can help models better understand the input context.",
),
gr.File(
label="Upload Optimized SS Prompt (Optional)",
type="binary",
file_count="single",
file_types=[".safetensors"],
),
],
outputs=[
gr.Textbox(
label="Generated Text",
info="The text generated by the model using the optimized Simon Says prompt.",
),
gr.File(
label="Download Optimized SS Prompt",
type="filepath",
),
],
description="This application allows you to optimize a Simon Says prompt based on your input text using advanced machine learning techniques. You can visualize the optimization process and generate text using the optimized prompt. Additionally, you can upload a pre-optimized tensor for direct inference (if you do, the other parameters will be ignored).",
)
# Ensure the Gradio interface is correctly launched
if __name__ == "__main__":
demo.launch(debug=True, show_error=True)
|