Spaces:
Sleeping
Sleeping
ACMCMC
commited on
Commit
·
0331d85
1
Parent(s):
3b410d3
Update code
Browse files- main.ipynb +879 -17
main.ipynb
CHANGED
@@ -2,10 +2,25 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "d1daab37",
|
7 |
"metadata": {},
|
8 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
"source": [
|
10 |
"import ipywidgets\n",
|
11 |
"\n",
|
@@ -20,14 +35,688 @@
|
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
-
"execution_count":
|
24 |
"id": "09b3c097",
|
25 |
"metadata": {},
|
26 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"source": [
|
28 |
"import transformers\n",
|
29 |
"import torch\n",
|
30 |
"import tqdm\n",
|
|
|
31 |
"\n",
|
32 |
"print(f\"Optimizing: {text_widget.value}\")\n",
|
33 |
"\n",
|
@@ -79,7 +768,7 @@
|
|
79 |
"\n",
|
80 |
"# Define the number of optimization steps\n",
|
81 |
"n_steps = 5000\n",
|
82 |
-
"patience =
|
83 |
"patience_counter = 0\n",
|
84 |
"epsilon = 1e-1\n",
|
85 |
"\n",
|
@@ -112,8 +801,8 @@
|
|
112 |
"\n",
|
113 |
" # Compute the ranks of the input IDs, i.e. how many tokens would have been more likely than the correct one (the label, the input IDs)\n",
|
114 |
" \n",
|
115 |
-
"
|
116 |
-
" ranks =
|
117 |
"\n",
|
118 |
" # Compute the loss\n",
|
119 |
" loss = loss_fn(\n",
|
@@ -134,7 +823,7 @@
|
|
134 |
" for optimized, original in zip(ss_prompt, original_ss_prompt)\n",
|
135 |
" )\n",
|
136 |
" print(\n",
|
137 |
-
" f\"Step {step}, Loss: {loss.item()}, L2 norm: {l2_norm.item()}, avg rank: {ranks.mean().item()}\"\n",
|
138 |
" )\n",
|
139 |
"\n",
|
140 |
" # Early stopping with patience\n",
|
@@ -147,12 +836,17 @@
|
|
147 |
"\n",
|
148 |
" if patience_counter >= patience:\n",
|
149 |
" print(f\"Early stopping at step {step} with best loss {best_loss}\")\n",
|
|
|
|
|
|
|
|
|
|
|
150 |
" break"
|
151 |
]
|
152 |
},
|
153 |
{
|
154 |
"cell_type": "code",
|
155 |
-
"execution_count":
|
156 |
"id": "cc9a6a2f",
|
157 |
"metadata": {},
|
158 |
"outputs": [],
|
@@ -163,22 +857,190 @@
|
|
163 |
},
|
164 |
{
|
165 |
"cell_type": "code",
|
166 |
-
"execution_count":
|
167 |
"id": "3186747d",
|
168 |
"metadata": {},
|
169 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
"source": [
|
171 |
"import os\n",
|
172 |
"import transformers\n",
|
173 |
"import torch\n",
|
174 |
"import tqdm\n",
|
175 |
"\n",
|
176 |
-
"
|
177 |
-
"
|
178 |
-
"
|
179 |
-
"
|
180 |
-
"
|
181 |
-
"
|
|
|
|
|
182 |
"\n",
|
183 |
"# Load the best soft prompt from file\n",
|
184 |
"best_ss_prompt = torch.load(\"best_ss_prompt.pt\")\n",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"id": "d1daab37",
|
7 |
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"data": {
|
11 |
+
"application/vnd.jupyter.widget-view+json": {
|
12 |
+
"model_id": "6be175a38e1843ab83831cb3a9a06296",
|
13 |
+
"version_major": 2,
|
14 |
+
"version_minor": 0
|
15 |
+
},
|
16 |
+
"text/plain": [
|
17 |
+
"Textarea(value=\"Solomonoff's theory of inductive inference proposes that all problems of logical induction can…"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
"metadata": {},
|
21 |
+
"output_type": "display_data"
|
22 |
+
}
|
23 |
+
],
|
24 |
"source": [
|
25 |
"import ipywidgets\n",
|
26 |
"\n",
|
|
|
35 |
},
|
36 |
{
|
37 |
"cell_type": "code",
|
38 |
+
"execution_count": 6,
|
39 |
"id": "09b3c097",
|
40 |
"metadata": {},
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"name": "stdout",
|
44 |
+
"output_type": "stream",
|
45 |
+
"text": [
|
46 |
+
"Optimizing: Hey this is a test text of me, Aldan, writing some random text in this text box. Will this work? Perhaps!\n"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"name": "stderr",
|
51 |
+
"output_type": "stream",
|
52 |
+
"text": [
|
53 |
+
" 0%| | 2/5000 [00:00<13:45, 6.05it/s]"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"name": "stdout",
|
58 |
+
"output_type": "stream",
|
59 |
+
"text": [
|
60 |
+
"Step 0, Loss: 5.8886637687683105, L2 norm: 0.5542519688606262, avg rank: 655.2222290039062\n"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"name": "stderr",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
" 0%| | 12/5000 [00:01<10:57, 7.58it/s]"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"name": "stdout",
|
72 |
+
"output_type": "stream",
|
73 |
+
"text": [
|
74 |
+
"Step 10, Loss: 5.159086227416992, L2 norm: 3.46441388130188, avg rank: 439.6666564941406\n"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"name": "stderr",
|
79 |
+
"output_type": "stream",
|
80 |
+
"text": [
|
81 |
+
" 0%| | 22/5000 [00:03<12:31, 6.62it/s]"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"name": "stdout",
|
86 |
+
"output_type": "stream",
|
87 |
+
"text": [
|
88 |
+
"Step 20, Loss: 4.893388748168945, L2 norm: 5.287822246551514, avg rank: 380.629638671875\n"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"name": "stderr",
|
93 |
+
"output_type": "stream",
|
94 |
+
"text": [
|
95 |
+
" 1%| | 32/5000 [00:04<10:37, 7.79it/s]"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"name": "stdout",
|
100 |
+
"output_type": "stream",
|
101 |
+
"text": [
|
102 |
+
"Step 30, Loss: 4.576204299926758, L2 norm: 7.122143745422363, avg rank: 313.0740661621094\n"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"name": "stderr",
|
107 |
+
"output_type": "stream",
|
108 |
+
"text": [
|
109 |
+
" 1%| | 42/5000 [00:05<10:42, 7.71it/s]"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"name": "stdout",
|
114 |
+
"output_type": "stream",
|
115 |
+
"text": [
|
116 |
+
"Step 40, Loss: 4.330563545227051, L2 norm: 8.640031814575195, avg rank: 189.8518524169922\n"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"name": "stderr",
|
121 |
+
"output_type": "stream",
|
122 |
+
"text": [
|
123 |
+
" 1%| | 52/5000 [00:07<13:39, 6.04it/s]"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"name": "stdout",
|
128 |
+
"output_type": "stream",
|
129 |
+
"text": [
|
130 |
+
"Step 50, Loss: 4.107393264770508, L2 norm: 10.037625312805176, avg rank: 130.6666717529297\n"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"name": "stderr",
|
135 |
+
"output_type": "stream",
|
136 |
+
"text": [
|
137 |
+
" 1%| | 62/5000 [00:08<11:33, 7.12it/s]"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"name": "stdout",
|
142 |
+
"output_type": "stream",
|
143 |
+
"text": [
|
144 |
+
"Step 60, Loss: 3.8990049362182617, L2 norm: 11.52373218536377, avg rank: 105.9259262084961\n"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"name": "stderr",
|
149 |
+
"output_type": "stream",
|
150 |
+
"text": [
|
151 |
+
" 1%|▏ | 72/5000 [00:10<19:46, 4.15it/s]"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"name": "stdout",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"Step 70, Loss: 3.689441442489624, L2 norm: 12.885846138000488, avg rank: 96.77777862548828\n"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"name": "stderr",
|
163 |
+
"output_type": "stream",
|
164 |
+
"text": [
|
165 |
+
" 2%|▏ | 82/5000 [00:13<14:27, 5.67it/s]"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"name": "stdout",
|
170 |
+
"output_type": "stream",
|
171 |
+
"text": [
|
172 |
+
"Step 80, Loss: 3.664461374282837, L2 norm: 14.095556259155273, avg rank: 82.48148345947266\n"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"name": "stderr",
|
177 |
+
"output_type": "stream",
|
178 |
+
"text": [
|
179 |
+
" 2%|▏ | 92/5000 [00:14<12:06, 6.76it/s]"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"name": "stdout",
|
184 |
+
"output_type": "stream",
|
185 |
+
"text": [
|
186 |
+
"Step 90, Loss: 3.359441041946411, L2 norm: 15.264603614807129, avg rank: 76.62963104248047\n"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"name": "stderr",
|
191 |
+
"output_type": "stream",
|
192 |
+
"text": [
|
193 |
+
" 2%|▏ | 102/5000 [00:15<11:25, 7.14it/s]"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"name": "stdout",
|
198 |
+
"output_type": "stream",
|
199 |
+
"text": [
|
200 |
+
"Step 100, Loss: 3.2641189098358154, L2 norm: 16.456912994384766, avg rank: 59.55555725097656\n"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"name": "stderr",
|
205 |
+
"output_type": "stream",
|
206 |
+
"text": [
|
207 |
+
" 2%|▏ | 111/5000 [00:17<10:21, 7.87it/s]"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"name": "stdout",
|
212 |
+
"output_type": "stream",
|
213 |
+
"text": [
|
214 |
+
"Step 110, Loss: 3.4184069633483887, L2 norm: 17.494909286499023, avg rank: 45.22222137451172\n"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"name": "stderr",
|
219 |
+
"output_type": "stream",
|
220 |
+
"text": [
|
221 |
+
" 2%|▏ | 122/5000 [00:19<14:21, 5.66it/s]"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"name": "stdout",
|
226 |
+
"output_type": "stream",
|
227 |
+
"text": [
|
228 |
+
"Step 120, Loss: 3.057454824447632, L2 norm: 18.361045837402344, avg rank: 47.592594146728516\n"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"name": "stderr",
|
233 |
+
"output_type": "stream",
|
234 |
+
"text": [
|
235 |
+
" 3%|▎ | 132/5000 [00:20<11:23, 7.12it/s]"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"name": "stdout",
|
240 |
+
"output_type": "stream",
|
241 |
+
"text": [
|
242 |
+
"Step 130, Loss: 2.752321243286133, L2 norm: 19.076860427856445, avg rank: 37.185184478759766\n"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"name": "stderr",
|
247 |
+
"output_type": "stream",
|
248 |
+
"text": [
|
249 |
+
" 3%|▎ | 142/5000 [00:21<10:12, 7.93it/s]"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"name": "stdout",
|
254 |
+
"output_type": "stream",
|
255 |
+
"text": [
|
256 |
+
"Step 140, Loss: 2.492600679397583, L2 norm: 19.873262405395508, avg rank: 29.0\n"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"name": "stderr",
|
261 |
+
"output_type": "stream",
|
262 |
+
"text": [
|
263 |
+
" 3%|▎ | 152/5000 [00:23<12:10, 6.64it/s]"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"name": "stdout",
|
268 |
+
"output_type": "stream",
|
269 |
+
"text": [
|
270 |
+
"Step 150, Loss: 2.2693941593170166, L2 norm: 20.689470291137695, avg rank: 25.22222137451172\n"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"name": "stderr",
|
275 |
+
"output_type": "stream",
|
276 |
+
"text": [
|
277 |
+
" 3%|▎ | 162/5000 [00:24<11:26, 7.05it/s]"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"name": "stdout",
|
282 |
+
"output_type": "stream",
|
283 |
+
"text": [
|
284 |
+
"Step 160, Loss: 2.0094830989837646, L2 norm: 21.427452087402344, avg rank: 20.185184478759766\n"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"name": "stderr",
|
289 |
+
"output_type": "stream",
|
290 |
+
"text": [
|
291 |
+
" 3%|▎ | 172/5000 [00:26<11:22, 7.08it/s]"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"name": "stdout",
|
296 |
+
"output_type": "stream",
|
297 |
+
"text": [
|
298 |
+
"Step 170, Loss: 1.8882372379302979, L2 norm: 22.13208770751953, avg rank: 23.074073791503906\n"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"name": "stderr",
|
303 |
+
"output_type": "stream",
|
304 |
+
"text": [
|
305 |
+
" 4%|▎ | 182/5000 [00:27<09:56, 8.08it/s]"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"name": "stdout",
|
310 |
+
"output_type": "stream",
|
311 |
+
"text": [
|
312 |
+
"Step 180, Loss: 1.8304041624069214, L2 norm: 22.583101272583008, avg rank: 28.33333396911621\n"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"name": "stderr",
|
317 |
+
"output_type": "stream",
|
318 |
+
"text": [
|
319 |
+
" 4%|▍ | 192/5000 [00:28<10:58, 7.30it/s]"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"name": "stdout",
|
324 |
+
"output_type": "stream",
|
325 |
+
"text": [
|
326 |
+
"Step 190, Loss: 1.5684080123901367, L2 norm: 23.05557632446289, avg rank: 22.037036895751953\n"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"name": "stderr",
|
331 |
+
"output_type": "stream",
|
332 |
+
"text": [
|
333 |
+
" 4%|▍ | 202/5000 [00:30<09:58, 8.02it/s]"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"name": "stdout",
|
338 |
+
"output_type": "stream",
|
339 |
+
"text": [
|
340 |
+
"Step 200, Loss: 1.3705590963363647, L2 norm: 23.487506866455078, avg rank: 18.925926208496094\n"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"name": "stderr",
|
345 |
+
"output_type": "stream",
|
346 |
+
"text": [
|
347 |
+
" 4%|▍ | 212/5000 [00:31<09:58, 8.00it/s]"
|
348 |
+
]
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"name": "stdout",
|
352 |
+
"output_type": "stream",
|
353 |
+
"text": [
|
354 |
+
"Step 210, Loss: 1.2061578035354614, L2 norm: 23.888507843017578, avg rank: 15.481481552124023\n"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"name": "stderr",
|
359 |
+
"output_type": "stream",
|
360 |
+
"text": [
|
361 |
+
" 4%|▍ | 222/5000 [00:32<10:36, 7.50it/s]"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"name": "stdout",
|
366 |
+
"output_type": "stream",
|
367 |
+
"text": [
|
368 |
+
"Step 220, Loss: 1.0748673677444458, L2 norm: 24.25291633605957, avg rank: 13.333333015441895\n"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"name": "stderr",
|
373 |
+
"output_type": "stream",
|
374 |
+
"text": [
|
375 |
+
" 5%|▍ | 232/5000 [00:34<11:45, 6.76it/s]"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"name": "stdout",
|
380 |
+
"output_type": "stream",
|
381 |
+
"text": [
|
382 |
+
"Step 230, Loss: 0.9695132374763489, L2 norm: 24.588470458984375, avg rank: 12.592592239379883\n"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"name": "stderr",
|
387 |
+
"output_type": "stream",
|
388 |
+
"text": [
|
389 |
+
" 5%|▍ | 242/5000 [00:35<11:47, 6.73it/s]"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"name": "stdout",
|
394 |
+
"output_type": "stream",
|
395 |
+
"text": [
|
396 |
+
"Step 240, Loss: 0.8693955540657043, L2 norm: 24.909320831298828, avg rank: 11.518518447875977\n"
|
397 |
+
]
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"name": "stderr",
|
401 |
+
"output_type": "stream",
|
402 |
+
"text": [
|
403 |
+
" 5%|▌ | 252/5000 [00:36<09:53, 7.99it/s]"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"name": "stdout",
|
408 |
+
"output_type": "stream",
|
409 |
+
"text": [
|
410 |
+
"Step 250, Loss: 0.7695979475975037, L2 norm: 25.205760955810547, avg rank: 10.037036895751953\n"
|
411 |
+
]
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"name": "stderr",
|
415 |
+
"output_type": "stream",
|
416 |
+
"text": [
|
417 |
+
" 5%|▌ | 262/5000 [00:38<10:06, 7.81it/s]"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"name": "stdout",
|
422 |
+
"output_type": "stream",
|
423 |
+
"text": [
|
424 |
+
"Step 260, Loss: 0.6803638935089111, L2 norm: 25.493518829345703, avg rank: 8.666666984558105\n"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"name": "stderr",
|
429 |
+
"output_type": "stream",
|
430 |
+
"text": [
|
431 |
+
" 5%|▌ | 272/5000 [00:39<11:42, 6.73it/s]"
|
432 |
+
]
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"name": "stdout",
|
436 |
+
"output_type": "stream",
|
437 |
+
"text": [
|
438 |
+
"Step 270, Loss: 0.6074316501617432, L2 norm: 25.7545108795166, avg rank: 7.407407283782959\n"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"name": "stderr",
|
443 |
+
"output_type": "stream",
|
444 |
+
"text": [
|
445 |
+
" 6%|▌ | 282/5000 [00:40<10:20, 7.60it/s]"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"name": "stdout",
|
450 |
+
"output_type": "stream",
|
451 |
+
"text": [
|
452 |
+
"Step 280, Loss: 0.5503782629966736, L2 norm: 25.987356185913086, avg rank: 6.666666507720947\n"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"name": "stderr",
|
457 |
+
"output_type": "stream",
|
458 |
+
"text": [
|
459 |
+
" 6%|▌ | 292/5000 [00:42<10:42, 7.33it/s]"
|
460 |
+
]
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"name": "stdout",
|
464 |
+
"output_type": "stream",
|
465 |
+
"text": [
|
466 |
+
"Step 290, Loss: 0.5049920678138733, L2 norm: 26.197214126586914, avg rank: 6.111111164093018\n"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"name": "stderr",
|
471 |
+
"output_type": "stream",
|
472 |
+
"text": [
|
473 |
+
" 6%|▌ | 302/5000 [00:43<11:42, 6.68it/s]"
|
474 |
+
]
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"name": "stdout",
|
478 |
+
"output_type": "stream",
|
479 |
+
"text": [
|
480 |
+
"Step 300, Loss: 0.46782854199409485, L2 norm: 26.38979721069336, avg rank: 5.407407283782959\n"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"name": "stderr",
|
485 |
+
"output_type": "stream",
|
486 |
+
"text": [
|
487 |
+
" 6%|▌ | 312/5000 [00:45<10:34, 7.39it/s]"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"name": "stdout",
|
492 |
+
"output_type": "stream",
|
493 |
+
"text": [
|
494 |
+
"Step 310, Loss: 0.4365224838256836, L2 norm: 26.568010330200195, avg rank: 4.666666507720947\n"
|
495 |
+
]
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"name": "stderr",
|
499 |
+
"output_type": "stream",
|
500 |
+
"text": [
|
501 |
+
" 6%|▋ | 322/5000 [00:46<10:26, 7.46it/s]"
|
502 |
+
]
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"name": "stdout",
|
506 |
+
"output_type": "stream",
|
507 |
+
"text": [
|
508 |
+
"Step 320, Loss: 0.4172615706920624, L2 norm: 26.73436737060547, avg rank: 4.296296119689941\n"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"name": "stderr",
|
513 |
+
"output_type": "stream",
|
514 |
+
"text": [
|
515 |
+
" 7%|▋ | 332/5000 [00:48<11:34, 6.73it/s]"
|
516 |
+
]
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"name": "stdout",
|
520 |
+
"output_type": "stream",
|
521 |
+
"text": [
|
522 |
+
"Step 330, Loss: 0.44890207052230835, L2 norm: 26.890453338623047, avg rank: 4.777777671813965\n"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"name": "stderr",
|
527 |
+
"output_type": "stream",
|
528 |
+
"text": [
|
529 |
+
" 7%|▋ | 342/5000 [00:49<09:44, 7.97it/s]"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"name": "stdout",
|
534 |
+
"output_type": "stream",
|
535 |
+
"text": [
|
536 |
+
"Step 340, Loss: 1.6345257759094238, L2 norm: 27.1015625, avg rank: 10.0\n"
|
537 |
+
]
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"name": "stderr",
|
541 |
+
"output_type": "stream",
|
542 |
+
"text": [
|
543 |
+
" 7%|▋ | 352/5000 [00:50<10:12, 7.59it/s]"
|
544 |
+
]
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"name": "stdout",
|
548 |
+
"output_type": "stream",
|
549 |
+
"text": [
|
550 |
+
"Step 350, Loss: 1.079402208328247, L2 norm: 27.411144256591797, avg rank: 6.592592716217041\n"
|
551 |
+
]
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"name": "stderr",
|
555 |
+
"output_type": "stream",
|
556 |
+
"text": [
|
557 |
+
" 7%|▋ | 362/5000 [00:52<12:10, 6.35it/s]"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"name": "stdout",
|
562 |
+
"output_type": "stream",
|
563 |
+
"text": [
|
564 |
+
"Step 360, Loss: 0.8217418193817139, L2 norm: 27.712562561035156, avg rank: 4.703703880310059\n"
|
565 |
+
]
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"name": "stderr",
|
569 |
+
"output_type": "stream",
|
570 |
+
"text": [
|
571 |
+
" 7%|▋ | 372/5000 [00:53<11:04, 6.97it/s]"
|
572 |
+
]
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"name": "stdout",
|
576 |
+
"output_type": "stream",
|
577 |
+
"text": [
|
578 |
+
"Step 370, Loss: 0.6470327973365784, L2 norm: 28.024415969848633, avg rank: 1.8888888359069824\n"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"name": "stderr",
|
583 |
+
"output_type": "stream",
|
584 |
+
"text": [
|
585 |
+
" 8%|▊ | 382/5000 [00:55<10:21, 7.43it/s]"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"name": "stdout",
|
590 |
+
"output_type": "stream",
|
591 |
+
"text": [
|
592 |
+
"Step 380, Loss: 1.0997235774993896, L2 norm: 28.2260684967041, avg rank: 7.185184955596924\n"
|
593 |
+
]
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"name": "stderr",
|
597 |
+
"output_type": "stream",
|
598 |
+
"text": [
|
599 |
+
" 8%|▊ | 392/5000 [00:56<10:58, 7.00it/s]"
|
600 |
+
]
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"name": "stdout",
|
604 |
+
"output_type": "stream",
|
605 |
+
"text": [
|
606 |
+
"Step 390, Loss: 0.64601731300354, L2 norm: 28.461565017700195, avg rank: 2.9259259700775146\n"
|
607 |
+
]
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"name": "stderr",
|
611 |
+
"output_type": "stream",
|
612 |
+
"text": [
|
613 |
+
" 8%|▊ | 402/5000 [00:58<09:58, 7.68it/s]"
|
614 |
+
]
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"name": "stdout",
|
618 |
+
"output_type": "stream",
|
619 |
+
"text": [
|
620 |
+
"Step 400, Loss: 0.482523649930954, L2 norm: 28.71732521057129, avg rank: 1.5185185670852661\n"
|
621 |
+
]
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"name": "stderr",
|
625 |
+
"output_type": "stream",
|
626 |
+
"text": [
|
627 |
+
" 8%|▊ | 412/5000 [00:59<09:54, 7.71it/s]"
|
628 |
+
]
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"name": "stdout",
|
632 |
+
"output_type": "stream",
|
633 |
+
"text": [
|
634 |
+
"Step 410, Loss: 0.38174617290496826, L2 norm: 28.943510055541992, avg rank: 1.2592592239379883\n"
|
635 |
+
]
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"name": "stderr",
|
639 |
+
"output_type": "stream",
|
640 |
+
"text": [
|
641 |
+
" 8%|▊ | 422/5000 [01:01<12:41, 6.01it/s]"
|
642 |
+
]
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"name": "stdout",
|
646 |
+
"output_type": "stream",
|
647 |
+
"text": [
|
648 |
+
"Step 420, Loss: 0.29940587282180786, L2 norm: 29.132537841796875, avg rank: 1.1111111640930176\n"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"name": "stderr",
|
653 |
+
"output_type": "stream",
|
654 |
+
"text": [
|
655 |
+
" 9%|▊ | 432/5000 [01:02<10:03, 7.57it/s]"
|
656 |
+
]
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"name": "stdout",
|
660 |
+
"output_type": "stream",
|
661 |
+
"text": [
|
662 |
+
"Step 430, Loss: 0.23488281667232513, L2 norm: 29.293710708618164, avg rank: 1.0740740299224854\n"
|
663 |
+
]
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"name": "stderr",
|
667 |
+
"output_type": "stream",
|
668 |
+
"text": [
|
669 |
+
" 9%|▉ | 442/5000 [01:03<09:35, 7.91it/s]"
|
670 |
+
]
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"name": "stdout",
|
674 |
+
"output_type": "stream",
|
675 |
+
"text": [
|
676 |
+
"Step 440, Loss: 0.19830304384231567, L2 norm: 29.436723709106445, avg rank: 1.0370370149612427\n"
|
677 |
+
]
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"name": "stderr",
|
681 |
+
"output_type": "stream",
|
682 |
+
"text": [
|
683 |
+
" 9%|▉ | 452/5000 [01:05<10:41, 7.09it/s]"
|
684 |
+
]
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"name": "stdout",
|
688 |
+
"output_type": "stream",
|
689 |
+
"text": [
|
690 |
+
"Step 450, Loss: 0.17161428928375244, L2 norm: 29.54309844970703, avg rank: 1.0370370149612427\n"
|
691 |
+
]
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"name": "stderr",
|
695 |
+
"output_type": "stream",
|
696 |
+
"text": [
|
697 |
+
" 9%|▉ | 454/5000 [01:05<10:54, 6.94it/s]"
|
698 |
+
]
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"name": "stdout",
|
702 |
+
"output_type": "stream",
|
703 |
+
"text": [
|
704 |
+
"Perfect ranks achieved at step 454, stopping optimization.\n"
|
705 |
+
]
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"name": "stderr",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"\n"
|
712 |
+
]
|
713 |
+
}
|
714 |
+
],
|
715 |
"source": [
|
716 |
"import transformers\n",
|
717 |
"import torch\n",
|
718 |
"import tqdm\n",
|
719 |
+
"torch.manual_seed(42) # Set a fixed seed for reproducibility\n",
|
720 |
"\n",
|
721 |
"print(f\"Optimizing: {text_widget.value}\")\n",
|
722 |
"\n",
|
|
|
768 |
"\n",
|
769 |
"# Define the number of optimization steps\n",
|
770 |
"n_steps = 5000\n",
|
771 |
+
"patience = 100\n",
|
772 |
"patience_counter = 0\n",
|
773 |
"epsilon = 1e-1\n",
|
774 |
"\n",
|
|
|
801 |
"\n",
|
802 |
" # Compute the ranks of the input IDs, i.e. how many tokens would have been more likely than the correct one (the label, the input IDs)\n",
|
803 |
" \n",
|
804 |
+
" # Calculate the ranks by summing the probabilities of tokens with higher logits than the correct token\n",
|
805 |
+
" ranks = torch.sum(probs > probs.gather(2, tokens[\"input_ids\"].unsqueeze(-1)), dim=-1) + 1\n",
|
806 |
"\n",
|
807 |
" # Compute the loss\n",
|
808 |
" loss = loss_fn(\n",
|
|
|
823 |
" for optimized, original in zip(ss_prompt, original_ss_prompt)\n",
|
824 |
" )\n",
|
825 |
" print(\n",
|
826 |
+
" f\"Step {step}, Loss: {loss.item()}, L2 norm: {l2_norm.item()}, avg rank: {ranks.float().mean().item()}\"\n",
|
827 |
" )\n",
|
828 |
"\n",
|
829 |
" # Early stopping with patience\n",
|
|
|
836 |
"\n",
|
837 |
" if patience_counter >= patience:\n",
|
838 |
" print(f\"Early stopping at step {step} with best loss {best_loss}\")\n",
|
839 |
+
" break\n",
|
840 |
+
"\n",
|
841 |
+
" # If the ranks are perfect (all 1), stop\n",
|
842 |
+
" if torch.all(ranks == 1):\n",
|
843 |
+
" print(f\"Perfect ranks achieved at step {step}, stopping optimization.\")\n",
|
844 |
" break"
|
845 |
]
|
846 |
},
|
847 |
{
|
848 |
"cell_type": "code",
|
849 |
+
"execution_count": 7,
|
850 |
"id": "cc9a6a2f",
|
851 |
"metadata": {},
|
852 |
"outputs": [],
|
|
|
857 |
},
|
858 |
{
|
859 |
"cell_type": "code",
|
860 |
+
"execution_count": 8,
|
861 |
"id": "3186747d",
|
862 |
"metadata": {},
|
863 |
+
"outputs": [
|
864 |
+
{
|
865 |
+
"name": "stderr",
|
866 |
+
"output_type": "stream",
|
867 |
+
"text": [
|
868 |
+
"100%|██████████| 150/150 [00:10<00:00, 14.83it/s]\n"
|
869 |
+
]
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"name": "stdout",
|
873 |
+
"output_type": "stream",
|
874 |
+
"text": [
|
875 |
+
"Reference: Hey this is a test text of me, Aldan, writing some random text in this text box. Will this work? Perhaps!\n",
|
876 |
+
"Generated: Hey this is a test text of me, Aldan, writing some random text in this text box. Will this work? Perhaps! I'll have to test this out. Maybe. I'll have to test this out some more. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe. Maybe\n",
|
877 |
+
"'Hey':\tRank 0.00, probability: 71.02%, Reference: 'Hey'\n",
|
878 |
+
"' this':\tRank 0.00, probability: 87.04%, Reference: ' this'\n",
|
879 |
+
"' is':\tRank 0.00, probability: 99.65%, Reference: ' is'\n",
|
880 |
+
"' a':\tRank 0.00, probability: 96.23%, Reference: ' a'\n",
|
881 |
+
"' test':\tRank 0.00, probability: 90.31%, Reference: ' test'\n",
|
882 |
+
"' text':\tRank 0.00, probability: 95.40%, Reference: ' text'\n",
|
883 |
+
"' of':\tRank 0.00, probability: 62.63%, Reference: ' of'\n",
|
884 |
+
"' me':\tRank 0.00, probability: 93.07%, Reference: ' me'\n",
|
885 |
+
"',':\tRank 0.00, probability: 95.56%, Reference: ','\n",
|
886 |
+
"' Ald':\tRank 0.00, probability: 71.15%, Reference: ' Ald'\n",
|
887 |
+
"'an':\tRank 0.00, probability: 84.45%, Reference: 'an'\n",
|
888 |
+
"',':\tRank 0.00, probability: 97.80%, Reference: ','\n",
|
889 |
+
"' writing':\tRank 0.00, probability: 95.00%, Reference: ' writing'\n",
|
890 |
+
"' some':\tRank 0.00, probability: 88.69%, Reference: ' some'\n",
|
891 |
+
"' random':\tRank 0.00, probability: 97.07%, Reference: ' random'\n",
|
892 |
+
"' text':\tRank 0.00, probability: 89.14%, Reference: ' text'\n",
|
893 |
+
"' in':\tRank 0.00, probability: 90.19%, Reference: ' in'\n",
|
894 |
+
"' this':\tRank 0.00, probability: 98.12%, Reference: ' this'\n",
|
895 |
+
"' text':\tRank 0.00, probability: 96.47%, Reference: ' text'\n",
|
896 |
+
"' box':\tRank 0.00, probability: 95.55%, Reference: ' box'\n",
|
897 |
+
"'.':\tRank 0.00, probability: 97.38%, Reference: '.'\n",
|
898 |
+
"' Will':\tRank 0.00, probability: 90.65%, Reference: ' Will'\n",
|
899 |
+
"' this':\tRank 0.00, probability: 93.50%, Reference: ' this'\n",
|
900 |
+
"' work':\tRank 0.00, probability: 49.78%, Reference: ' work'\n",
|
901 |
+
"'?':\tRank 0.00, probability: 96.33%, Reference: '?'\n",
|
902 |
+
"' Perhaps':\tRank 0.00, probability: 76.97%, Reference: ' Perhaps'\n",
|
903 |
+
"'!':\tRank 0.00, probability: 42.45%, Reference: '!'\n",
|
904 |
+
"' I':\tRank 0.00, probability: 11.67%, Reference: 'N/A'\n",
|
905 |
+
"''ll':\tRank 0.00, probability: 10.19%, Reference: 'N/A'\n",
|
906 |
+
"' have':\tRank 0.00, probability: 53.08%, Reference: 'N/A'\n",
|
907 |
+
"' to':\tRank 0.00, probability: 77.45%, Reference: 'N/A'\n",
|
908 |
+
"' test':\tRank 0.00, probability: 8.06%, Reference: 'N/A'\n",
|
909 |
+
"' this':\tRank 0.00, probability: 40.56%, Reference: 'N/A'\n",
|
910 |
+
"' out':\tRank 0.00, probability: 51.98%, Reference: 'N/A'\n",
|
911 |
+
"'.':\tRank 0.00, probability: 26.31%, Reference: 'N/A'\n",
|
912 |
+
"' Maybe':\tRank 0.00, probability: 27.11%, Reference: 'N/A'\n",
|
913 |
+
"'.':\tRank 0.00, probability: 22.16%, Reference: 'N/A'\n",
|
914 |
+
"' I':\tRank 0.00, probability: 20.00%, Reference: 'N/A'\n",
|
915 |
+
"''ll':\tRank 0.00, probability: 21.35%, Reference: 'N/A'\n",
|
916 |
+
"' have':\tRank 0.00, probability: 59.45%, Reference: 'N/A'\n",
|
917 |
+
"' to':\tRank 0.00, probability: 74.45%, Reference: 'N/A'\n",
|
918 |
+
"' test':\tRank 0.00, probability: 17.91%, Reference: 'N/A'\n",
|
919 |
+
"' this':\tRank 0.00, probability: 70.72%, Reference: 'N/A'\n",
|
920 |
+
"' out':\tRank 0.00, probability: 87.33%, Reference: 'N/A'\n",
|
921 |
+
"' some':\tRank 0.00, probability: 28.23%, Reference: 'N/A'\n",
|
922 |
+
"' more':\tRank 0.00, probability: 26.20%, Reference: 'N/A'\n",
|
923 |
+
"'.':\tRank 0.00, probability: 22.73%, Reference: 'N/A'\n",
|
924 |
+
"' Maybe':\tRank 0.00, probability: 36.98%, Reference: 'N/A'\n",
|
925 |
+
"'.':\tRank 0.00, probability: 54.91%, Reference: 'N/A'\n",
|
926 |
+
"' Maybe':\tRank 0.00, probability: 64.39%, Reference: 'N/A'\n",
|
927 |
+
"'.':\tRank 0.00, probability: 65.85%, Reference: 'N/A'\n",
|
928 |
+
"' Maybe':\tRank 0.00, probability: 65.80%, Reference: 'N/A'\n",
|
929 |
+
"'.':\tRank 0.00, probability: 51.26%, Reference: 'N/A'\n",
|
930 |
+
"' Maybe':\tRank 0.00, probability: 60.87%, Reference: 'N/A'\n",
|
931 |
+
"'.':\tRank 0.00, probability: 35.56%, Reference: 'N/A'\n",
|
932 |
+
"' Maybe':\tRank 0.00, probability: 48.26%, Reference: 'N/A'\n",
|
933 |
+
"'.':\tRank 0.00, probability: 28.23%, Reference: 'N/A'\n",
|
934 |
+
"' Maybe':\tRank 0.00, probability: 43.46%, Reference: 'N/A'\n",
|
935 |
+
"'.':\tRank 0.00, probability: 23.53%, Reference: 'N/A'\n",
|
936 |
+
"' Maybe':\tRank 0.00, probability: 42.47%, Reference: 'N/A'\n",
|
937 |
+
"'.':\tRank 0.00, probability: 21.56%, Reference: 'N/A'\n",
|
938 |
+
"' Maybe':\tRank 0.00, probability: 44.99%, Reference: 'N/A'\n",
|
939 |
+
"'.':\tRank 0.00, probability: 22.61%, Reference: 'N/A'\n",
|
940 |
+
"' Maybe':\tRank 0.00, probability: 48.24%, Reference: 'N/A'\n",
|
941 |
+
"'.':\tRank 0.00, probability: 19.47%, Reference: 'N/A'\n",
|
942 |
+
"' Maybe':\tRank 0.00, probability: 51.23%, Reference: 'N/A'\n",
|
943 |
+
"'.':\tRank 0.00, probability: 19.13%, Reference: 'N/A'\n",
|
944 |
+
"' Maybe':\tRank 0.00, probability: 54.27%, Reference: 'N/A'\n",
|
945 |
+
"'.':\tRank 0.00, probability: 20.28%, Reference: 'N/A'\n",
|
946 |
+
"' Maybe':\tRank 0.00, probability: 56.09%, Reference: 'N/A'\n",
|
947 |
+
"'.':\tRank 0.00, probability: 23.08%, Reference: 'N/A'\n",
|
948 |
+
"' Maybe':\tRank 0.00, probability: 60.23%, Reference: 'N/A'\n",
|
949 |
+
"'.':\tRank 0.00, probability: 25.86%, Reference: 'N/A'\n",
|
950 |
+
"' Maybe':\tRank 0.00, probability: 63.49%, Reference: 'N/A'\n",
|
951 |
+
"'.':\tRank 0.00, probability: 28.66%, Reference: 'N/A'\n",
|
952 |
+
"' Maybe':\tRank 0.00, probability: 65.52%, Reference: 'N/A'\n",
|
953 |
+
"'.':\tRank 0.00, probability: 29.81%, Reference: 'N/A'\n",
|
954 |
+
"' Maybe':\tRank 0.00, probability: 67.58%, Reference: 'N/A'\n",
|
955 |
+
"'.':\tRank 0.00, probability: 32.28%, Reference: 'N/A'\n",
|
956 |
+
"' Maybe':\tRank 0.00, probability: 69.40%, Reference: 'N/A'\n",
|
957 |
+
"'.':\tRank 0.00, probability: 33.50%, Reference: 'N/A'\n",
|
958 |
+
"' Maybe':\tRank 0.00, probability: 70.15%, Reference: 'N/A'\n",
|
959 |
+
"'.':\tRank 0.00, probability: 34.01%, Reference: 'N/A'\n",
|
960 |
+
"' Maybe':\tRank 0.00, probability: 71.20%, Reference: 'N/A'\n",
|
961 |
+
"'.':\tRank 0.00, probability: 36.83%, Reference: 'N/A'\n",
|
962 |
+
"' Maybe':\tRank 0.00, probability: 71.29%, Reference: 'N/A'\n",
|
963 |
+
"'.':\tRank 0.00, probability: 38.54%, Reference: 'N/A'\n",
|
964 |
+
"' Maybe':\tRank 0.00, probability: 72.09%, Reference: 'N/A'\n",
|
965 |
+
"'.':\tRank 0.00, probability: 40.10%, Reference: 'N/A'\n",
|
966 |
+
"' Maybe':\tRank 0.00, probability: 71.66%, Reference: 'N/A'\n",
|
967 |
+
"'.':\tRank 0.00, probability: 41.78%, Reference: 'N/A'\n",
|
968 |
+
"' Maybe':\tRank 0.00, probability: 72.04%, Reference: 'N/A'\n",
|
969 |
+
"'.':\tRank 0.00, probability: 42.55%, Reference: 'N/A'\n",
|
970 |
+
"' Maybe':\tRank 0.00, probability: 71.18%, Reference: 'N/A'\n",
|
971 |
+
"'.':\tRank 0.00, probability: 44.33%, Reference: 'N/A'\n",
|
972 |
+
"' Maybe':\tRank 0.00, probability: 70.62%, Reference: 'N/A'\n",
|
973 |
+
"'.':\tRank 0.00, probability: 44.84%, Reference: 'N/A'\n",
|
974 |
+
"' Maybe':\tRank 0.00, probability: 70.70%, Reference: 'N/A'\n",
|
975 |
+
"'.':\tRank 0.00, probability: 44.89%, Reference: 'N/A'\n",
|
976 |
+
"' Maybe':\tRank 0.00, probability: 71.80%, Reference: 'N/A'\n",
|
977 |
+
"'.':\tRank 0.00, probability: 46.26%, Reference: 'N/A'\n",
|
978 |
+
"' Maybe':\tRank 0.00, probability: 71.88%, Reference: 'N/A'\n",
|
979 |
+
"'.':\tRank 0.00, probability: 46.11%, Reference: 'N/A'\n",
|
980 |
+
"' Maybe':\tRank 0.00, probability: 72.24%, Reference: 'N/A'\n",
|
981 |
+
"'.':\tRank 0.00, probability: 44.98%, Reference: 'N/A'\n",
|
982 |
+
"' Maybe':\tRank 0.00, probability: 73.18%, Reference: 'N/A'\n",
|
983 |
+
"'.':\tRank 0.00, probability: 45.08%, Reference: 'N/A'\n",
|
984 |
+
"' Maybe':\tRank 0.00, probability: 75.74%, Reference: 'N/A'\n",
|
985 |
+
"'.':\tRank 0.00, probability: 45.33%, Reference: 'N/A'\n",
|
986 |
+
"' Maybe':\tRank 0.00, probability: 76.68%, Reference: 'N/A'\n",
|
987 |
+
"'.':\tRank 0.00, probability: 46.90%, Reference: 'N/A'\n",
|
988 |
+
"' Maybe':\tRank 0.00, probability: 78.19%, Reference: 'N/A'\n",
|
989 |
+
"'.':\tRank 0.00, probability: 46.31%, Reference: 'N/A'\n",
|
990 |
+
"' Maybe':\tRank 0.00, probability: 78.19%, Reference: 'N/A'\n",
|
991 |
+
"'.':\tRank 0.00, probability: 48.19%, Reference: 'N/A'\n",
|
992 |
+
"' Maybe':\tRank 0.00, probability: 79.38%, Reference: 'N/A'\n",
|
993 |
+
"'.':\tRank 0.00, probability: 48.56%, Reference: 'N/A'\n",
|
994 |
+
"' Maybe':\tRank 0.00, probability: 80.29%, Reference: 'N/A'\n",
|
995 |
+
"'.':\tRank 0.00, probability: 49.49%, Reference: 'N/A'\n",
|
996 |
+
"' Maybe':\tRank 0.00, probability: 79.51%, Reference: 'N/A'\n",
|
997 |
+
"'.':\tRank 0.00, probability: 51.13%, Reference: 'N/A'\n",
|
998 |
+
"' Maybe':\tRank 0.00, probability: 81.70%, Reference: 'N/A'\n",
|
999 |
+
"'.':\tRank 0.00, probability: 52.29%, Reference: 'N/A'\n",
|
1000 |
+
"' Maybe':\tRank 0.00, probability: 80.87%, Reference: 'N/A'\n",
|
1001 |
+
"'.':\tRank 0.00, probability: 52.84%, Reference: 'N/A'\n",
|
1002 |
+
"' Maybe':\tRank 0.00, probability: 81.61%, Reference: 'N/A'\n",
|
1003 |
+
"'.':\tRank 0.00, probability: 54.15%, Reference: 'N/A'\n",
|
1004 |
+
"' Maybe':\tRank 0.00, probability: 81.67%, Reference: 'N/A'\n",
|
1005 |
+
"'.':\tRank 0.00, probability: 55.17%, Reference: 'N/A'\n",
|
1006 |
+
"' Maybe':\tRank 0.00, probability: 82.23%, Reference: 'N/A'\n",
|
1007 |
+
"'.':\tRank 0.00, probability: 55.47%, Reference: 'N/A'\n",
|
1008 |
+
"' Maybe':\tRank 0.00, probability: 82.99%, Reference: 'N/A'\n",
|
1009 |
+
"'.':\tRank 0.00, probability: 57.04%, Reference: 'N/A'\n",
|
1010 |
+
"' Maybe':\tRank 0.00, probability: 83.32%, Reference: 'N/A'\n",
|
1011 |
+
"'.':\tRank 0.00, probability: 58.06%, Reference: 'N/A'\n",
|
1012 |
+
"' Maybe':\tRank 0.00, probability: 84.47%, Reference: 'N/A'\n",
|
1013 |
+
"'.':\tRank 0.00, probability: 59.85%, Reference: 'N/A'\n",
|
1014 |
+
"' Maybe':\tRank 0.00, probability: 83.82%, Reference: 'N/A'\n",
|
1015 |
+
"'.':\tRank 0.00, probability: 58.62%, Reference: 'N/A'\n",
|
1016 |
+
"' Maybe':\tRank 0.00, probability: 85.14%, Reference: 'N/A'\n",
|
1017 |
+
"'.':\tRank 0.00, probability: 60.26%, Reference: 'N/A'\n",
|
1018 |
+
"' Maybe':\tRank 0.00, probability: 85.67%, Reference: 'N/A'\n",
|
1019 |
+
"'.':\tRank 0.00, probability: 62.56%, Reference: 'N/A'\n",
|
1020 |
+
"' Maybe':\tRank 0.00, probability: 86.05%, Reference: 'N/A'\n",
|
1021 |
+
"'.':\tRank 0.00, probability: 64.28%, Reference: 'N/A'\n",
|
1022 |
+
"' Maybe':\tRank 0.00, probability: 86.93%, Reference: 'N/A'\n",
|
1023 |
+
"'.':\tRank 0.00, probability: 67.84%, Reference: 'N/A'\n",
|
1024 |
+
"' Maybe':\tRank 0.00, probability: 87.52%, Reference: 'N/A'\n",
|
1025 |
+
"'.':\tRank 0.00, probability: 73.01%, Reference: 'N/A'\n",
|
1026 |
+
"' Maybe':\tRank 0.00, probability: 88.17%, Reference: 'N/A'\n"
|
1027 |
+
]
|
1028 |
+
}
|
1029 |
+
],
|
1030 |
"source": [
|
1031 |
"import os\n",
|
1032 |
"import transformers\n",
|
1033 |
"import torch\n",
|
1034 |
"import tqdm\n",
|
1035 |
"\n",
|
1036 |
+
"if \"tokenizer\" not in locals():\n",
|
1037 |
+
" tokenizer: transformers.PreTrainedTokenizer = (\n",
|
1038 |
+
" transformers.AutoTokenizer.from_pretrained(\"openai-community/gpt2\")\n",
|
1039 |
+
" )\n",
|
1040 |
+
"if \"model\" not in locals():\n",
|
1041 |
+
" model: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained(\n",
|
1042 |
+
" \"openai-community/gpt2\"\n",
|
1043 |
+
" )\n",
|
1044 |
"\n",
|
1045 |
"# Load the best soft prompt from file\n",
|
1046 |
"best_ss_prompt = torch.load(\"best_ss_prompt.pt\")\n",
|