diff --git "a/fine-tuning.ipynb" "b/fine-tuning.ipynb"
new file mode 100644--- /dev/null
+++ "b/fine-tuning.ipynb"
@@ -0,0 +1,3547 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "malpM0sXFn9K"
+ },
+ "source": [
+ "Install required packages"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {
+ "id": "bvHV20Q0vGkE"
+ },
+ "outputs": [],
+ "source": [
+ "from IPython.display import clear_output\n",
+ "\n",
+ "!pip install -qqq --upgrade bitsandbytes transformers peft accelerate datasets trl flash_attn\n",
+ "!pip install huggingface_hub\n",
+ "!pip install python-dotenv\n",
+ "!pip install absl-py nltk rouge_score\n",
+ "!pip list | grep transformers.\n",
+ "\n",
+ "clear_output()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fx_7c7MJoqmW"
+ },
+ "source": [
+ "Import packages"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {
+ "id": "Mrn1Z3usdTEG"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import torch\n",
+ "import pandas as pd\n",
+ "from datasets import Dataset, load_metric\n",
+ "from peft import LoraConfig, prepare_model_for_kbit_training, PeftModel, get_peft_model\n",
+ "from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, set_seed, pipeline)\n",
+ "from trl import SFTTrainer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qa80IqnWJL_m"
+ },
+ "source": [
+ "Define parameters"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {
+ "id": "Y5dL-Zn6gDk5"
+ },
+ "outputs": [],
+ "source": [
+ "base_model_name = \"microsoft/Phi-3-mini-4k-instruct\"\n",
+ "model_name=\"acorreal/project-management-tutor\"\n",
+ "use_4bit = True\n",
+ "bnb_4bit_quant_type = \"nf4\"\n",
+ "use_double_quant = True\n",
+ "set_seed(1234)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Z3pJIh4h3Usa"
+ },
+ "source": [
+ "Connect to Huggingface Hub"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "GgZlM-ov461d",
+ "outputId": "f0fe1cf2-3627-43cd-f0c4-4f59cecff75a"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
+ "Token is valid (permission: write).\n",
+ "Your token has been saved to /root/.cache/huggingface/token\n",
+ "Login successful\n"
+ ]
+ }
+ ],
+ "source": [
+ "from huggingface_hub import login\n",
+ "from google.colab import userdata\n",
+ "\n",
+ "login(token=userdata.get('HF_TOKEN'))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HJjE6hP3vt_Z"
+ },
+ "source": [
+ "Load the dataset with the instruction set"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 293
+ },
+ "id": "_Rum2HpfdTEH",
+ "outputId": "33c2d7df-ac76-44ef-ea8b-ff8a1573dee5"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 1042,\n \"fields\": [\n {\n \"column\": \"question\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 807,\n \"samples\": [\n \"How do you ensure project deliverables are accepted by stakeholders?\",\n \"What aspect of word relationships do word embeddings understand better than traditional methods?\",\n \"How does understanding probability help in natural language processing?\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"answer\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 843,\n \"samples\": [\n \"PRINCE2 (Projects IN Controlled Environments) is a process-based project management methodology.\",\n \"It enables developers to accurately analyze data distributions and make informed predictions based on statistical models.\",\n \"A project assumption log is a document that records all project assumptions, tracking their status and impact on the project.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"instruction\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"You are an expert in project management, tasked with helping students master project management principles, including the Unified Process. Provide guidance on planning, executing, and closing projects, covering key concepts like scope, time, cost, quality, risk management, and stakeholder engagement. Use practical examples, case studies, and interactive discussions to enhance their knowledge and application of these skills in real-world scenarios.:\\n\\n\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
+ "type": "dataframe",
+ "variable_name": "df"
+ },
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " question | \n",
+ " answer | \n",
+ " instruction | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " What is the primary focus of the book \"CogiMes... | \n",
+ " The book focuses on teaching AI model engineer... | \n",
+ " You are an expert in project management, taske... | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Who is Aria Gray, and what is her role at Nebu... | \n",
+ " Aria Gray is a fresh graduate in Computational... | \n",
+ " You are an expert in project management, taske... | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " What is MLflow, and why is it important in AI ... | \n",
+ " MLflow is a platform that manages the machine ... | \n",
+ " You are an expert in project management, taske... | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " What is MLOps, and how does it relate to AI de... | \n",
+ " MLOps is a practice for collaboration between ... | \n",
+ " You are an expert in project management, taske... | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " What are the four main components of MLflow? | \n",
+ " The four main components of MLflow are Trackin... | \n",
+ " You are an expert in project management, taske... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " question \\\n",
+ "0 What is the primary focus of the book \"CogiMes... \n",
+ "1 Who is Aria Gray, and what is her role at Nebu... \n",
+ "2 What is MLflow, and why is it important in AI ... \n",
+ "3 What is MLOps, and how does it relate to AI de... \n",
+ "4 What are the four main components of MLflow? \n",
+ "\n",
+ " answer \\\n",
+ "0 The book focuses on teaching AI model engineer... \n",
+ "1 Aria Gray is a fresh graduate in Computational... \n",
+ "2 MLflow is a platform that manages the machine ... \n",
+ "3 MLOps is a practice for collaboration between ... \n",
+ "4 The four main components of MLflow are Trackin... \n",
+ "\n",
+ " instruction \n",
+ "0 You are an expert in project management, taske... \n",
+ "1 You are an expert in project management, taske... \n",
+ "2 You are an expert in project management, taske... \n",
+ "3 You are an expert in project management, taske... \n",
+ "4 You are an expert in project management, taske... "
+ ]
+ },
+ "execution_count": 86,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('dataset.csv')\n",
+ "df.columns = ['question', 'answer']\n",
+ "df['instruction'] = \"You are an expert in project management, tasked with helping students master project management principles, including the Unified Process. Provide guidance on planning, executing, and closing projects, covering key concepts like scope, time, cost, quality, risk management, and stakeholder engagement. Use practical examples, case studies, and interactive discussions to enhance their knowledge and application of these skills in real-world scenarios.:\\n\\n\"\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "qbbH23N9vXh2",
+ "outputId": "25e80255-2d8b-4ec7-f59e-eeaebd30c844"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['question', 'answer', 'instruction'],\n",
+ " num_rows: 1042\n",
+ "})"
+ ]
+ },
+ "execution_count": 87,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Load the dataset\n",
+ "dataset = Dataset.from_pandas(df)\n",
+ "dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "WdlOkzJyFEKq",
+ "outputId": "8d4d8470-791c-4352-91bc-d8d5503df484"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'question': 'Who is Aria Gray, and what is her role at NebulaTech?', 'answer': 'Aria Gray is a fresh graduate in Computational Linguistics starting her career at NebulaTech, where she explores various AI and ML concepts.', 'instruction': 'You are an expert in project management, tasked with helping students master project management principles, including the Unified Process. Provide guidance on planning, executing, and closing projects, covering key concepts like scope, time, cost, quality, risk management, and stakeholder engagement. Use practical examples, case studies, and interactive discussions to enhance their knowledge and application of these skills in real-world scenarios.:\\n\\n'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(dataset[1])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4Yk2MqEJi81c"
+ },
+ "source": [
+ "Load the tokenizer to prepare the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {
+ "id": "4e7dmUBujAAM"
+ },
+ "outputs": [],
+ "source": [
+ "tokenizer = AutoTokenizer.from_pretrained(base_model_name)\n",
+ "tokenizer.padding_side = 'right' # to prevent warnings"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "oMkbuNypTgD9"
+ },
+ "source": [
+ "Function to generate the suitable format for our model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {
+ "id": "LTQGocjjjOg7"
+ },
+ "outputs": [],
+ "source": [
+ "def create_message_column(row):\n",
+ " messages = []\n",
+ " user = {\n",
+ " \"content\": f\"{row['instruction']}\\n Input: {row['question']}\",\n",
+ " \"role\": \"user\"\n",
+ " }\n",
+ " messages.append(user)\n",
+ " assistant = {\n",
+ " \"content\": f\"{row['answer']}\",\n",
+ " \"role\": \"assistant\"\n",
+ " }\n",
+ " messages.append(assistant)\n",
+ " return {\"messages\": messages}\n",
+ "\n",
+ "def format_dataset_chatml(row):\n",
+ " return {\"text\": tokenizer.apply_chat_template(row[\"messages\"], add_generation_prompt=False, tokenize=False)}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "S79BrDDPTt3X"
+ },
+ "source": [
+ "Implement the ChatML format on our dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81,
+ "referenced_widgets": [
+ "cfb4f33aea5e49f48dccad575d082ffc",
+ "28441ee9b2df4bf8abacc9d166217c76",
+ "a21bb19e666a4babae044897836728f5",
+ "9ed6b7c7023e4493ad9745adfd3b2074",
+ "92ddd872cc65454a8963c70873689f6f",
+ "a7a3628339b64f8a8e4f1d795234ae5c",
+ "b08adcf1cff94949b97263daa1057c11",
+ "7e424eea36914ae9869782b14526eb12",
+ "c0a958819bfb4e5d8cf1c8b0879a75ac",
+ "11292b70dd874dc3be734701c90443c7",
+ "cad977610daa439b94894483d7a6ac9d",
+ "beaea4abd70b40a1ac571333b1d2002a",
+ "ed16ef5fe8704e3d825f557917662d68",
+ "12a46e84998d421380f2452b218e741a",
+ "6a1db9c8da0d4590b0de75241885c454",
+ "edfd18f8c7534a67ab7fe7ed30a2d1c8",
+ "c4a05e7d1bea4f91b4fa4f356b6dacec",
+ "211b9625a5574de38a5e602965070e8a",
+ "239c40f4cf284c3e987e3327447d6817",
+ "27b459f0310e462f92042a94576258ba",
+ "9875ede714e34892914c24c4d1c182c8",
+ "e1c0157d5f2b46e1bd7d70611fe67533"
+ ]
+ },
+ "id": "reLTRh8mjwN6",
+ "outputId": "7fc786d3-2f0c-421b-8584-148e5fcc85ad"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "cfb4f33aea5e49f48dccad575d082ffc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/1042 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "beaea4abd70b40a1ac571333b1d2002a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/1042 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "dataset_chatml = dataset.map(create_message_column)\n",
+ "dataset_chatml = dataset_chatml.map(format_dataset_chatml)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "__DhyJw3qCBO"
+ },
+ "source": [
+ "Print example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Tba_SeUKkAHB",
+ "outputId": "a270279e-d455-4fc6-d09c-f90194bea624"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'question': 'What is the primary focus of the book \"CogiMesh, Nexing, AdaptScenes, and the Unified Model Engineering Process (UMEP)\"?',\n",
+ " 'answer': 'The book focuses on teaching AI model engineering using the Unified Model Engineering Process (UMEP), a methodology designed for AI applications.',\n",
+ " 'instruction': 'You are an expert in project management, tasked with helping students master project management principles, including the Unified Process. Provide guidance on planning, executing, and closing projects, covering key concepts like scope, time, cost, quality, risk management, and stakeholder engagement. Use practical examples, case studies, and interactive discussions to enhance their knowledge and application of these skills in real-world scenarios.:\\n\\n',\n",
+ " 'messages': [{'content': 'You are an expert in project management, tasked with helping students master project management principles, including the Unified Process. Provide guidance on planning, executing, and closing projects, covering key concepts like scope, time, cost, quality, risk management, and stakeholder engagement. Use practical examples, case studies, and interactive discussions to enhance their knowledge and application of these skills in real-world scenarios.:\\n\\n\\n Input: What is the primary focus of the book \"CogiMesh, Nexing, AdaptScenes, and the Unified Model Engineering Process (UMEP)\"?',\n",
+ " 'role': 'user'},\n",
+ " {'content': 'The book focuses on teaching AI model engineering using the Unified Model Engineering Process (UMEP), a methodology designed for AI applications.',\n",
+ " 'role': 'assistant'}],\n",
+ " 'text': '<|user|>\\nYou are an expert in project management, tasked with helping students master project management principles, including the Unified Process. Provide guidance on planning, executing, and closing projects, covering key concepts like scope, time, cost, quality, risk management, and stakeholder engagement. Use practical examples, case studies, and interactive discussions to enhance their knowledge and application of these skills in real-world scenarios.:\\n\\n\\n Input: What is the primary focus of the book \"CogiMesh, Nexing, AdaptScenes, and the Unified Model Engineering Process (UMEP)\"?<|end|>\\n<|assistant|>\\nThe book focuses on teaching AI model engineering using the Unified Model Engineering Process (UMEP), a methodology designed for AI applications.<|end|>\\n<|endoftext|>'}"
+ ]
+ },
+ "execution_count": 92,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataset_chatml[0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AsQw1d5FrFgk"
+ },
+ "source": [
+ "Print dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "YGvvmV_8k2-H",
+ "outputId": "53d6ba10-3252-452b-efca-b3d559bec738"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DatasetDict({\n",
+ " train: Dataset({\n",
+ " features: ['question', 'answer', 'instruction', 'messages', 'text'],\n",
+ " num_rows: 989\n",
+ " })\n",
+ " test: Dataset({\n",
+ " features: ['question', 'answer', 'instruction', 'messages', 'text'],\n",
+ " num_rows: 53\n",
+ " })\n",
+ "})"
+ ]
+ },
+ "execution_count": 93,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataset_chatml = dataset_chatml.train_test_split(test_size=0.05, seed=1234)\n",
+ "dataset_chatml"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RJivw-mLwyDI"
+ },
+ "source": [
+ "Recognize GPU"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "metadata": {
+ "id": "fc_LpaoqlVhi"
+ },
+ "outputs": [],
+ "source": [
+ "compute_dtype = torch.bfloat16\n",
+ "attn_implementation = 'flash_attention_2'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uR17n-POlq7C"
+ },
+ "source": [
+ "Load the tokenizer and model to finetune"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 95,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 67,
+ "referenced_widgets": [
+ "0f541f0c3a8c44d89c4c4444e6b86dd1",
+ "13da589ca7a14879a164c627e5e43cbf",
+ "8ac73d8ce9184875acf177c30b2a7d63",
+ "96940b26278c4a0286a0b21464437330",
+ "998753f1273448679c490b08b5551dab",
+ "5b7e2e99128f483a9471d037eecc5259",
+ "1b82a415d7b34da5a601646f14343be5",
+ "26ff033fa5584cb88f93420b1b374b02",
+ "75b7215676eb4bb2bb3d4da8a9781ed1",
+ "61ce23452cdd4d2b90493a57d9cc13bb",
+ "9cb1031c8b4b482c87363852642ff299"
+ ]
+ },
+ "id": "5-OL7AW-xE_r",
+ "outputId": "129eec60-4609-4c82-b923-bf7f1b7ccd62"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "`low_cpu_mem_usage` was None, now set to True since model is quantized.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "0f541f0c3a8c44d89c4c4444e6b86dd1",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Loading checkpoint shards: 0%| | 0/2 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "tokenizer = AutoTokenizer.from_pretrained(base_model_name,\n",
+ " trust_remote_code=True,\n",
+ " add_eos_token=True,\n",
+ " use_fast=True)\n",
+ "tokenizer.pad_token = tokenizer.unk_token\n",
+ "tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)\n",
+ "tokenizer.padding_side = 'left'\n",
+ "\n",
+ "bnb_config = BitsAndBytesConfig(\n",
+ " load_in_4bit=use_4bit,\n",
+ " bnb_4bit_quant_type=bnb_4bit_quant_type,\n",
+ " bnb_4bit_compute_dtype=compute_dtype,\n",
+ " bnb_4bit_use_double_quant=use_double_quant,\n",
+ ")\n",
+ "\n",
+ "model = AutoModelForCausalLM.from_pretrained(\n",
+ " base_model_name,\n",
+ " torch_dtype=compute_dtype,\n",
+ " trust_remote_code=True,\n",
+ " quantization_config=bnb_config,\n",
+ " attn_implementation=attn_implementation\n",
+ ")\n",
+ "\n",
+ "model = prepare_model_for_kbit_training(model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MJ7Pt1LsUCcG"
+ },
+ "source": [
+ "Set up the QLoRA parameters."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 96,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Kx7QX_9lXNF3",
+ "outputId": "a70db646-325d-4c20-a413-7d568a61b831"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Phi3ForCausalLM(\n",
+ " (model): Phi3Model(\n",
+ " (embed_tokens): Embedding(32064, 3072, padding_idx=32000)\n",
+ " (embed_dropout): Dropout(p=0.0, inplace=False)\n",
+ " (layers): ModuleList(\n",
+ " (0-31): 32 x Phi3DecoderLayer(\n",
+ " (self_attn): Phi3FlashAttention2(\n",
+ " (o_proj): Linear4bit(in_features=3072, out_features=3072, bias=False)\n",
+ " (qkv_proj): Linear4bit(in_features=3072, out_features=9216, bias=False)\n",
+ " (rotary_emb): Phi3RotaryEmbedding()\n",
+ " )\n",
+ " (mlp): Phi3MLP(\n",
+ " (gate_up_proj): Linear4bit(in_features=3072, out_features=16384, bias=False)\n",
+ " (down_proj): Linear4bit(in_features=8192, out_features=3072, bias=False)\n",
+ " (activation_fn): SiLU()\n",
+ " )\n",
+ " (input_layernorm): Phi3RMSNorm()\n",
+ " (resid_attn_dropout): Dropout(p=0.0, inplace=False)\n",
+ " (resid_mlp_dropout): Dropout(p=0.0, inplace=False)\n",
+ " (post_attention_layernorm): Phi3RMSNorm()\n",
+ " )\n",
+ " )\n",
+ " (norm): Phi3RMSNorm()\n",
+ " )\n",
+ " (lm_head): Linear(in_features=3072, out_features=32064, bias=False)\n",
+ ")\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1XTnGAYRy-wZ"
+ },
+ "source": [
+ "We now possess all the necessary components to construct our SFTTrainer and commence the model training."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 97,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 355,
+ "referenced_widgets": [
+ "0d94445df4a54cbbb2ea62baa1d6038f",
+ "7e7b5f934cb34b048fdfdb0e03c101b5",
+ "bf44d6a690df48d69888ed2c7ce22271",
+ "97ccfb9a0506414ca34f792e0394b6ef",
+ "9559cb79376d44caa39542fe3b9728a5",
+ "28aa7ecbb4624d15b6129922047087cf",
+ "498ca4e9966349df875f324eee256f00",
+ "a5216cceb3794b0992170aa44090e01c",
+ "7499cdf07d824078b48a255b83f2dd00",
+ "df350f44831740f697f02164a6fac56e",
+ "4d63ff282aa446b484d261c97182bf29",
+ "1d3427ba39734b828894a3d97d262e47",
+ "77c5bd288203446289bfc5863ecf96f3",
+ "9682a7b2a4364c068b8850fc6f82a67c",
+ "f8afa06b55c5488885949ee2415c96dd",
+ "220ef1f3589c4d7c987d07dbb5c5fd1a",
+ "dc30be9053fa478883be76b6da5fe93a",
+ "f7bc602aeab44107a396f4a77e087d14",
+ "90f44a810d3d418db190c1cf75a01bab",
+ "a42fe4a9784f45bf9f8a737cdd60534c",
+ "5fdbb986ed43421fa63055d1610da360",
+ "1d9ece13bfa440069b7a6e77896a8dbe"
+ ]
+ },
+ "id": "GKRtirQOy_P5",
+ "outputId": "7357be96-822c-4b49-ea7d-8d82b7521807"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1540: FutureWarning: using `no_cuda` is deprecated and will be removed in version 5.0 of 🤗 Transformers. Use `use_cpu` instead\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_deprecation.py:100: FutureWarning: Deprecated argument(s) used in '__init__': dataset_text_field, max_seq_length. Will not be supported from version '1.0.0'.\n",
+ "\n",
+ "Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.\n",
+ " warnings.warn(message, FutureWarning)\n",
+ "/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py:280: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py:318: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "0d94445df4a54cbbb2ea62baa1d6038f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/989 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "1d3427ba39734b828894a3d97d262e47",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/53 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py:408: UserWarning: You passed a tokenizer with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to overflow issues when training a model in half-precision. You might consider adding `tokenizer.padding_side = 'right'` to your code.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import TrainingArguments\n",
+ "\n",
+ "# Definir la configuración de LoRA\n",
+ "peft_config = LoraConfig(\n",
+ " lora_alpha=32,\n",
+ " lora_dropout=0.1,\n",
+ " r=8,\n",
+ " bias=\"none\",\n",
+ " target_modules=[\n",
+ " \"model.layers.0.self_attn.qkv_proj\",\n",
+ " \"model.layers.0.self_attn.o_proj\",\n",
+ " \"model.layers.0.mlp.gate_up_proj\",\n",
+ " \"model.layers.0.mlp.down_proj\",\n",
+ " \"model.layers.1.self_attn.qkv_proj\",\n",
+ " \"model.layers.1.self_attn.o_proj\",\n",
+ " \"model.layers.1.mlp.gate_up_proj\",\n",
+ " \"model.layers.1.mlp.down_proj\"\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "# Configuración de los argumentos de entrenamiento\n",
+ "args = TrainingArguments(\n",
+ " output_dir=\"./results\",\n",
+ " num_train_epochs=1,\n",
+ " per_device_train_batch_size=16,\n",
+ " per_device_eval_batch_size=16,\n",
+ " warmup_steps=500,\n",
+ " weight_decay=0.01,\n",
+ " logging_dir=\"./logs\",\n",
+ " save_total_limit=1,\n",
+ " save_strategy=\"epoch\",\n",
+ " evaluation_strategy=\"epoch\",\n",
+ " max_grad_norm=1.0,\n",
+ " gradient_accumulation_steps=2,\n",
+ " learning_rate=5e-5,\n",
+ " lr_scheduler_type=\"linear\",\n",
+ " report_to=\"none\",\n",
+ " no_cuda=True,\n",
+ " fp16_full_eval=False,\n",
+ " use_cpu=True\n",
+ ")\n",
+ "\n",
+ "# Crear el objeto Trainer para el fine-tuning\n",
+ "trainer = SFTTrainer(\n",
+ " model=model,\n",
+ " train_dataset=dataset_chatml['train'],\n",
+ " eval_dataset=dataset_chatml['test'],\n",
+ " peft_config=peft_config,\n",
+ " dataset_text_field=\"text\",\n",
+ " max_seq_length=1024,\n",
+ " tokenizer=tokenizer,\n",
+ " args=args,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 98,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "kroxB_q_dTEN",
+ "outputId": "ff88e09f-c3e6-4c7c-c729-0debfc8a16ec"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "model\n",
+ "model.embed_tokens\n",
+ "model.embed_dropout\n",
+ "model.layers\n",
+ "model.layers.0\n",
+ "model.layers.0.self_attn\n",
+ "model.layers.0.self_attn.o_proj\n",
+ "model.layers.0.self_attn.o_proj.base_layer\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Get model modules\n",
+ "count = 0\n",
+ "for name, module in model.named_modules():\n",
+ " count += 1\n",
+ " if count < 10:\n",
+ " print(name)\n",
+ " else:\n",
+ " break"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "L3StRhnVzQfp"
+ },
+ "source": [
+ "Initiate the model training process by invoking the train() method on our Trainer instance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 99,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 163
+ },
+ "id": "I-XPLvS7zQ4n",
+ "outputId": "dbf8a653-2679-4689-bf8e-e518a0a5c890"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [31/31 07:13, Epoch 1/1]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Epoch | \n",
+ " Training Loss | \n",
+ " Validation Loss | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " No log | \n",
+ " No log | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "peft_model = get_peft_model(model, peft_config)\n",
+ "peft_model.config.use_cache = False\n",
+ "trainer.train()\n",
+ "trainer.save_model()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nnO3eM42roIF"
+ },
+ "source": [
+ "Login in to Hugging Face"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 100,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 103,
+ "referenced_widgets": [
+ "0707788838e24cfe8861e94043bc8c48",
+ "286032cb13804f17b2a76c020f1ce6d7",
+ "5d37df5586b34179aabe1ae158b85b14",
+ "75248a11e7d84f5397292479cd65edc5",
+ "64779974d8b8487caa11bb15a591548a",
+ "b0cfb803e019420b8cc1621b362b4014",
+ "91bdb4ac14d44a43ade1cae70671b5fa",
+ "bc686ff706364cf29f9eb06455b09e4b",
+ "88376a2b93b64969a441b2094c75e12b",
+ "07997ae121d84673844d4364151c17b0",
+ "30e0ea4ee07143e5a3f177c6ae3a8929"
+ ]
+ },
+ "id": "pIIR67O862DH",
+ "outputId": "da3fc748-5e96-46fb-c686-0281e7e22088"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "0707788838e24cfe8861e94043bc8c48",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "adapter_model.safetensors: 0%| | 0.00/3.15M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "CommitInfo(commit_url='https://huggingface.co/acorreal/results/commit/41ed99d19088771aeac48cf2a0abf10c17e2e26a', commit_message='End of training', commit_description='', oid='41ed99d19088771aeac48cf2a0abf10c17e2e26a', pr_url=None, pr_revision=None, pr_num=None)"
+ ]
+ },
+ "execution_count": 100,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#trainer.hub_model_id = \"acorreal/project-management-adapter\"\n",
+ "#hf_adapter_repo=\"acorreal/adapter-phi-3-mini-mental-health\"\n",
+ "#trainer.push_to_hub(token='TOKEN')\n",
+ "trainer.push_to_hub()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BOEDlZDyKg5A"
+ },
+ "source": [
+ "### Download model from Huggin Face"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 101,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "cCfIfknkjn_n",
+ "outputId": "9662ea1e-f446-411c-8cc8-a9f62696e6f2"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.43.3)\n",
+ "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (0.24.5)\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.15.4)\n",
+ "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.26.4)\n",
+ "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (24.1)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.5.15)\n",
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.32.3)\n",
+ "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.3)\n",
+ "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.19.1)\n",
+ "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.4)\n",
+ "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (2024.5.0)\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.12.2)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.7)\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.7)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2024.7.4)\n"
+ ]
+ }
+ ],
+ "source": [
+ "%pip install --upgrade transformers huggingface_hub"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 102,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "QHiuGFv8A0rd",
+ "outputId": "d74acde3-57cf-4010-b98b-54e3863818a2"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
+ "Token is valid (permission: write).\n",
+ "Your token has been saved to /root/.cache/huggingface/token\n",
+ "Login successful\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Unused kwargs: ['_load_in_4bit', '_load_in_8bit', 'quant_method']. These kwargs are not used in .\n",
+ "/usr/local/lib/python3.10/dist-packages/peft/tuners/lora/bnb.py:336: UserWarning: Merge lora module to 4-bit linear may get different generations due to rounding errors.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
+ "from huggingface_hub import login\n",
+ "from google.colab import userdata\n",
+ "login(token=userdata.get('HF_TOKEN'))\n",
+ "\n",
+ "pm_adapter_name = \"acorreal/phi3-project-management-adapter\"\n",
+ "pm_model_name = \"acorreal/phi3-project-management\"\n",
+ "\n",
+ "pm_model = AutoModelForCausalLM.from_pretrained(pm_model_name,\n",
+ " trust_remote_code=True,\n",
+ " device_map=\"auto\")\n",
+ "\n",
+ "pm_model = PeftModel.from_pretrained(model, pm_adapter_name)\n",
+ "pm_model = pm_model.merge_and_unload()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 103,
+ "metadata": {
+ "id": "GiCVIrwYCbdf"
+ },
+ "outputs": [],
+ "source": [
+ "pm_tokenizer = AutoTokenizer.from_pretrained(pm_adapter_name)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 104,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 71
+ },
+ "id": "S2mkb2toCkp-",
+ "outputId": "1d83f536-ee0f-423d-d4a4-f2050e756c9a"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "CommitInfo(commit_url='https://huggingface.co/acorreal/phi3-project-management/commit/cc10becf9c9636142cc63902ac00787cf5cb131c', commit_message='Upload tokenizer', commit_description='', oid='cc10becf9c9636142cc63902ac00787cf5cb131c', pr_url=None, pr_revision=None, pr_num=None)"
+ ]
+ },
+ "execution_count": 104,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pm_model.push_to_hub(pm_model_name)\n",
+ "pm_tokenizer.push_to_hub(pm_model_name)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "NPFsF-OrfBZc"
+ },
+ "source": [
+ "Evaluation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ppxqEpgoU1hu"
+ },
+ "source": [
+ "Retrieve the model and tokenizer from the Hub."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 104,
+ "metadata": {
+ "id": "bZwALfOTBAOx"
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 105,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "X0M3cv12_YRt",
+ "outputId": "2da6f247-9016-4fad-bbdb-e476a1e71303"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: bitsandbytes in /usr/local/lib/python3.10/dist-packages (0.43.3)\n",
+ "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from bitsandbytes) (2.3.1+cu121)\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from bitsandbytes) (1.26.4)\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (3.15.4)\n",
+ "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (4.12.2)\n",
+ "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (1.13.1)\n",
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (3.3)\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (3.1.4)\n",
+ "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (2024.5.0)\n",
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (8.9.2.26)\n",
+ "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (12.1.3.1)\n",
+ "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (11.0.2.54)\n",
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (10.3.2.106)\n",
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (11.4.5.107)\n",
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (12.1.0.106)\n",
+ "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (2.20.5)\n",
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (12.1.105)\n",
+ "Requirement already satisfied: triton==2.3.1 in /usr/local/lib/python3.10/dist-packages (from torch->bitsandbytes) (2.3.1)\n",
+ "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch->bitsandbytes) (12.6.20)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->bitsandbytes) (2.1.5)\n",
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->bitsandbytes) (1.3.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install bitsandbytes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 125,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "oJ6pB5b9U3xt",
+ "outputId": "17999274-f911-48e1-bb1c-7c97a774db4c"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Unused kwargs: ['_load_in_4bit', '_load_in_8bit', 'quant_method']. These kwargs are not used in .\n",
+ "`low_cpu_mem_usage` was None, now set to True since model is quantized.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
+ "from huggingface_hub import login\n",
+ "from google.colab import userdata\n",
+ "\n",
+ "pm_model_name = \"acorreal/phi3-project-management\"\n",
+ "\n",
+ "test_model = AutoModelForCausalLM.from_pretrained(pm_model_name)\n",
+ "test_tokenizer = AutoTokenizer.from_pretrained(pm_model_name, trust_remote_code=True)"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "L4",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.4"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "0707788838e24cfe8861e94043bc8c48": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_286032cb13804f17b2a76c020f1ce6d7",
+ "IPY_MODEL_5d37df5586b34179aabe1ae158b85b14",
+ "IPY_MODEL_75248a11e7d84f5397292479cd65edc5"
+ ],
+ "layout": "IPY_MODEL_64779974d8b8487caa11bb15a591548a"
+ }
+ },
+ "07997ae121d84673844d4364151c17b0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0d94445df4a54cbbb2ea62baa1d6038f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_7e7b5f934cb34b048fdfdb0e03c101b5",
+ "IPY_MODEL_bf44d6a690df48d69888ed2c7ce22271",
+ "IPY_MODEL_97ccfb9a0506414ca34f792e0394b6ef"
+ ],
+ "layout": "IPY_MODEL_9559cb79376d44caa39542fe3b9728a5"
+ }
+ },
+ "0f541f0c3a8c44d89c4c4444e6b86dd1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_13da589ca7a14879a164c627e5e43cbf",
+ "IPY_MODEL_8ac73d8ce9184875acf177c30b2a7d63",
+ "IPY_MODEL_96940b26278c4a0286a0b21464437330"
+ ],
+ "layout": "IPY_MODEL_998753f1273448679c490b08b5551dab"
+ }
+ },
+ "11292b70dd874dc3be734701c90443c7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "12a46e84998d421380f2452b218e741a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_239c40f4cf284c3e987e3327447d6817",
+ "max": 1042,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_27b459f0310e462f92042a94576258ba",
+ "value": 1042
+ }
+ },
+ "13da589ca7a14879a164c627e5e43cbf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5b7e2e99128f483a9471d037eecc5259",
+ "placeholder": "​",
+ "style": "IPY_MODEL_1b82a415d7b34da5a601646f14343be5",
+ "value": "Loading checkpoint shards: 100%"
+ }
+ },
+ "1b82a415d7b34da5a601646f14343be5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1d3427ba39734b828894a3d97d262e47": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_77c5bd288203446289bfc5863ecf96f3",
+ "IPY_MODEL_9682a7b2a4364c068b8850fc6f82a67c",
+ "IPY_MODEL_f8afa06b55c5488885949ee2415c96dd"
+ ],
+ "layout": "IPY_MODEL_220ef1f3589c4d7c987d07dbb5c5fd1a"
+ }
+ },
+ "1d9ece13bfa440069b7a6e77896a8dbe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "211b9625a5574de38a5e602965070e8a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "220ef1f3589c4d7c987d07dbb5c5fd1a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "239c40f4cf284c3e987e3327447d6817": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "26ff033fa5584cb88f93420b1b374b02": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "27b459f0310e462f92042a94576258ba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "28441ee9b2df4bf8abacc9d166217c76": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a7a3628339b64f8a8e4f1d795234ae5c",
+ "placeholder": "​",
+ "style": "IPY_MODEL_b08adcf1cff94949b97263daa1057c11",
+ "value": "Map: 100%"
+ }
+ },
+ "286032cb13804f17b2a76c020f1ce6d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b0cfb803e019420b8cc1621b362b4014",
+ "placeholder": "​",
+ "style": "IPY_MODEL_91bdb4ac14d44a43ade1cae70671b5fa",
+ "value": "adapter_model.safetensors: 100%"
+ }
+ },
+ "28aa7ecbb4624d15b6129922047087cf": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "30e0ea4ee07143e5a3f177c6ae3a8929": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "498ca4e9966349df875f324eee256f00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4d63ff282aa446b484d261c97182bf29": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5b7e2e99128f483a9471d037eecc5259": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5d37df5586b34179aabe1ae158b85b14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bc686ff706364cf29f9eb06455b09e4b",
+ "max": 3147848,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_88376a2b93b64969a441b2094c75e12b",
+ "value": 3147848
+ }
+ },
+ "5fdbb986ed43421fa63055d1610da360": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "61ce23452cdd4d2b90493a57d9cc13bb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "64779974d8b8487caa11bb15a591548a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6a1db9c8da0d4590b0de75241885c454": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9875ede714e34892914c24c4d1c182c8",
+ "placeholder": "​",
+ "style": "IPY_MODEL_e1c0157d5f2b46e1bd7d70611fe67533",
+ "value": " 1042/1042 [00:00<00:00, 6909.36 examples/s]"
+ }
+ },
+ "7499cdf07d824078b48a255b83f2dd00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "75248a11e7d84f5397292479cd65edc5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_07997ae121d84673844d4364151c17b0",
+ "placeholder": "​",
+ "style": "IPY_MODEL_30e0ea4ee07143e5a3f177c6ae3a8929",
+ "value": " 3.15M/3.15M [00:01<00:00, 28.2MB/s]"
+ }
+ },
+ "75b7215676eb4bb2bb3d4da8a9781ed1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "77c5bd288203446289bfc5863ecf96f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_dc30be9053fa478883be76b6da5fe93a",
+ "placeholder": "​",
+ "style": "IPY_MODEL_f7bc602aeab44107a396f4a77e087d14",
+ "value": "Map: 100%"
+ }
+ },
+ "7e424eea36914ae9869782b14526eb12": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7e7b5f934cb34b048fdfdb0e03c101b5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_28aa7ecbb4624d15b6129922047087cf",
+ "placeholder": "​",
+ "style": "IPY_MODEL_498ca4e9966349df875f324eee256f00",
+ "value": "Map: 100%"
+ }
+ },
+ "88376a2b93b64969a441b2094c75e12b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8ac73d8ce9184875acf177c30b2a7d63": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_26ff033fa5584cb88f93420b1b374b02",
+ "max": 2,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_75b7215676eb4bb2bb3d4da8a9781ed1",
+ "value": 2
+ }
+ },
+ "90f44a810d3d418db190c1cf75a01bab": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "91bdb4ac14d44a43ade1cae70671b5fa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "92ddd872cc65454a8963c70873689f6f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9559cb79376d44caa39542fe3b9728a5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9682a7b2a4364c068b8850fc6f82a67c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_90f44a810d3d418db190c1cf75a01bab",
+ "max": 53,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a42fe4a9784f45bf9f8a737cdd60534c",
+ "value": 53
+ }
+ },
+ "96940b26278c4a0286a0b21464437330": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_61ce23452cdd4d2b90493a57d9cc13bb",
+ "placeholder": "​",
+ "style": "IPY_MODEL_9cb1031c8b4b482c87363852642ff299",
+ "value": " 2/2 [00:03<00:00,  1.52s/it]"
+ }
+ },
+ "97ccfb9a0506414ca34f792e0394b6ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_df350f44831740f697f02164a6fac56e",
+ "placeholder": "​",
+ "style": "IPY_MODEL_4d63ff282aa446b484d261c97182bf29",
+ "value": " 989/989 [00:00<00:00, 6150.93 examples/s]"
+ }
+ },
+ "9875ede714e34892914c24c4d1c182c8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "998753f1273448679c490b08b5551dab": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9cb1031c8b4b482c87363852642ff299": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9ed6b7c7023e4493ad9745adfd3b2074": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_11292b70dd874dc3be734701c90443c7",
+ "placeholder": "​",
+ "style": "IPY_MODEL_cad977610daa439b94894483d7a6ac9d",
+ "value": " 1042/1042 [00:00<00:00, 10346.38 examples/s]"
+ }
+ },
+ "a21bb19e666a4babae044897836728f5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7e424eea36914ae9869782b14526eb12",
+ "max": 1042,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c0a958819bfb4e5d8cf1c8b0879a75ac",
+ "value": 1042
+ }
+ },
+ "a42fe4a9784f45bf9f8a737cdd60534c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a5216cceb3794b0992170aa44090e01c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a7a3628339b64f8a8e4f1d795234ae5c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b08adcf1cff94949b97263daa1057c11": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b0cfb803e019420b8cc1621b362b4014": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bc686ff706364cf29f9eb06455b09e4b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "beaea4abd70b40a1ac571333b1d2002a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ed16ef5fe8704e3d825f557917662d68",
+ "IPY_MODEL_12a46e84998d421380f2452b218e741a",
+ "IPY_MODEL_6a1db9c8da0d4590b0de75241885c454"
+ ],
+ "layout": "IPY_MODEL_edfd18f8c7534a67ab7fe7ed30a2d1c8"
+ }
+ },
+ "bf44d6a690df48d69888ed2c7ce22271": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a5216cceb3794b0992170aa44090e01c",
+ "max": 989,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_7499cdf07d824078b48a255b83f2dd00",
+ "value": 989
+ }
+ },
+ "c0a958819bfb4e5d8cf1c8b0879a75ac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c4a05e7d1bea4f91b4fa4f356b6dacec": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cad977610daa439b94894483d7a6ac9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cfb4f33aea5e49f48dccad575d082ffc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_28441ee9b2df4bf8abacc9d166217c76",
+ "IPY_MODEL_a21bb19e666a4babae044897836728f5",
+ "IPY_MODEL_9ed6b7c7023e4493ad9745adfd3b2074"
+ ],
+ "layout": "IPY_MODEL_92ddd872cc65454a8963c70873689f6f"
+ }
+ },
+ "dc30be9053fa478883be76b6da5fe93a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "df350f44831740f697f02164a6fac56e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e1c0157d5f2b46e1bd7d70611fe67533": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ed16ef5fe8704e3d825f557917662d68": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c4a05e7d1bea4f91b4fa4f356b6dacec",
+ "placeholder": "​",
+ "style": "IPY_MODEL_211b9625a5574de38a5e602965070e8a",
+ "value": "Map: 100%"
+ }
+ },
+ "edfd18f8c7534a67ab7fe7ed30a2d1c8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f7bc602aeab44107a396f4a77e087d14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f8afa06b55c5488885949ee2415c96dd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5fdbb986ed43421fa63055d1610da360",
+ "placeholder": "​",
+ "style": "IPY_MODEL_1d9ece13bfa440069b7a6e77896a8dbe",
+ "value": " 53/53 [00:00<00:00, 2092.22 examples/s]"
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}