File size: 9,245 Bytes
0ceb721
 
 
46b0409
0ceb721
99ac186
46b0409
6a48762
 
 
6ee82fe
6a48762
 
35d83a8
0ceb721
35d83a8
0ceb721
35d83a8
6a48762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d83a8
 
6a48762
eb7667c
6a48762
0ceb721
6a48762
 
 
0ceb721
6a48762
0ceb721
6a48762
0ceb721
6a48762
 
0ceb721
 
 
b11da78
0ceb721
b11da78
35d83a8
0ceb721
 
 
b11da78
35d83a8
0ceb721
35d83a8
0ceb721
 
 
 
6a48762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cd2cf
 
b11da78
73cd2cf
6a48762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cd2cf
080e344
 
 
 
 
1663f39
 
e17747a
080e344
 
0ceb721
080e344
1663f39
 
 
 
 
 
 
0ceb721
 
1663f39
0ceb721
1663f39
0ceb721
080e344
6a48762
080e344
0ceb721
 
 
 
 
 
 
6a48762
 
0ceb721
 
1663f39
0ceb721
8ceccef
0ceb721
1663f39
 
080e344
0ceb721
 
 
1663f39
0ceb721
1663f39
0ceb721
 
 
 
 
6a48762
 
 
0ceb721
 
 
 
1663f39
 
 
 
0ceb721
 
 
 
 
 
ec8233c
99ac186
 
 
 
 
e17747a
 
 
 
 
 
0ceb721
8ceccef
0ceb721
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
from tqdm import tqdm
import wandb
from AgentBase import AgentBase


class MCAgent(AgentBase):
    def __init__(
        self, /, update_type="on-policy", **kwargs  # "on-policy" or "off-policy
    ):
        super().__init__(run_name=self.__class__.__name__, **kwargs)
        self.update_type = update_type
        self.run_name = f"{self.run_name}_{self.update_type}"
        self.initialize()

    def initialize(self):
        print("Resetting all state variables...")
        # The Q-Table holds the current expected return for each state-action pair
        self.Q = np.random.rand(self.n_states, self.n_actions)
        # self.Q = np.zeros((self.n_states, self.n_actions))

        if self.update_type.startswith("on_policy"):
            # For On-Policy update type:
            # R keeps track of all the returns that have been observed for each state-action pair to update Q
            self.R = [[[] for _ in range(self.n_actions)] for _ in range(self.n_states)]
            # An arbitrary e-greedy policy:
            self.Pi = self.create_soft_policy()
        elif self.update_type.startswith("off_policy"):
            # For Off-Policy update type:
            self.C = np.zeros((self.n_states, self.n_actions))
            # Target policy is greedy with respect to the current Q
            self.Pi = np.zeros((self.n_states, self.n_actions))
            self.Pi[np.arange(self.n_states), np.argmax(self.Q, axis=1)] = 1.0
            # Behavior policy is e-greedy with respect to the current Q
            self.Pi_behaviour = self.create_soft_policy(random=False)
        else:
            raise ValueError(
                f"update_type must be either 'on_policy' or 'off_policy', but got {self.update_type}"
            )
        print("=" * 80)
        print("Initial policy:")
        print(self.Pi)
        print("=" * 80)

    def create_soft_policy(self, random=True):
        # An arbitrary e-greedy policy:
        # With probability epsilon, sample an action uniformly at random
        Pi = np.full((self.n_states, self.n_actions), self.epsilon / self.n_actions)
        # For the initial policy, we randomly select a greedy action for each state
        Pi[
            np.arange(self.n_states),
            np.random.randint(self.n_actions, size=self.n_states)
            if random
            else np.argmax(self.Q, axis=1),
        ] = (
            1.0 - self.epsilon + self.epsilon / self.n_actions
        )
        return Pi

    def update_on_policy(self, episode_hist):
        G = 0.0
        # For each step of the episode, in reverse order
        for t in range(len(episode_hist) - 1, -1, -1):
            state, action, reward = episode_hist[t]
            # Updating the expected return
            G = self.gamma * G + reward
            # First-visit MC method:
            # Updating the expected return and policy only if this is the first visit to this state-action pair
            if (state, action) not in [(x[0], x[1]) for x in episode_hist[:t]]:
                self.R[state][action].append(G)
                self.Q[state, action] = np.mean(self.R[state][action])
                # Updating the epsilon-greedy policy.
                # With probability epsilon, sample an action uniformly at random
                self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions)
                # The greedy action receives the remaining probability mass
                self.Pi[state, np.argmax(self.Q[state])] = (
                    1 - self.epsilon + self.epsilon / self.n_actions
                )

    # def update_every_visit(self, episode_hist):
    #     G = 0
    #     # Backward pass through the trajectory
    #     for t in range(len(episode_hist) - 1, -1, -1):
    #         state, action, reward = episode_hist[t]
    #         # Updating the expected return
    #         G = self.gamma * G + reward
    #         # Every-visit MC method:
    #         # Updating the expected return and policy for every visit to this state-action pair
    #         self.R[state][action].append(G)
    #         self.Q[state, action] = np.mean(self.R[state][action])
    #         # Updating the epsilon-greedy policy.
    #         # With probability epsilon, sample an action uniformly at random
    #         self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions)
    #         # The greedy action receives the remaining probability mass
    #         self.Pi[state, np.argmax(self.Q[state])] = (
    #             1 - self.epsilon + self.epsilon / self.n_actions
    #         )

    def update_off_policy(self, episode_hist):
        G, W = 0.0, 1.0
        for t in range(len(episode_hist) - 1, -1, -1):
            state, action, reward = episode_hist[t]
            # Updating the expected return
            G = self.gamma * G + reward
            self.C[state, action] = self.C[state, action] + W
            self.Q[state, action] = self.Q[state, action] + (
                W / self.C[state, action]
            ) * (G - self.Q[state, action])
            # Updating the target policy to be greedy with respect to the current Q
            greedy_action = np.argmax(self.Q[state])
            self.Pi[state] = np.zeros(self.n_actions)
            self.Pi[state, greedy_action] = 1.0
            # if At != At*, then break
            if action != greedy_action:
                break
            W = W * (1.0 / self.Pi_behaviour[state, action])

        # Update the behavior policy such that it has coverage of the target policy
        self.Pi_behaviour = self.create_soft_policy(random=False)

    def train(
        self,
        n_train_episodes=2000,
        test_every=100,
        log_wandb=False,
        save_best=True,
        save_best_dir=None,
        early_stopping=False,
        **kwargs,
    ):
        print(f"Training agent for {n_train_episodes} episodes...")

        (
            train_running_success_rate,
            test_success_rate,
            test_running_success_rate,
            avg_ep_len,
        ) = (0.0, 0.0, 0.0, 0.0)

        stats = {
            "train_running_success_rate": train_running_success_rate,
            "test_running_success_rate": test_running_success_rate,
            "test_success_rate": test_success_rate,
            "avg_ep_len": avg_ep_len,
        }

        update_func = getattr(self, f"update_{self.update_type}")

        tqrange = tqdm(range(n_train_episodes))
        tqrange.set_description("Training")

        if log_wandb:
            self.wandb_log_img(episode=None)

        for e in tqrange:
            policy = self.Pi_behaviour if self.update_type == "off_policy" else self.Pi
            episode_hist, solved, _ = self.run_episode(policy=policy, **kwargs)
            rewards = [x[2] for x in episode_hist]
            total_reward, avg_reward = sum(rewards), np.mean(rewards)

            train_running_success_rate = (
                0.99 * train_running_success_rate + 0.01 * solved
            )
            avg_ep_len = 0.99 * avg_ep_len + 0.01 * len(episode_hist)

            update_func(episode_hist)

            stats = {
                "train_running_success_rate": train_running_success_rate,
                "test_running_success_rate": test_running_success_rate,
                "test_success_rate": test_success_rate,
                "avg_ep_len": avg_ep_len,
                "total_reward": total_reward,
                "avg_reward": avg_reward,
            }
            tqrange.set_postfix(stats)

            # Test the agent every test_every episodes
            if test_every > 0 and e % test_every == 0:
                # For off policy, self.Pi is the target policy. For on policy, self.Pi is the soft policy
                test_success_rate = self.test(verbose=False, **kwargs)
                if log_wandb:
                    self.wandb_log_img(episode=e)

            test_running_success_rate = (
                0.99 * test_running_success_rate + 0.01 * test_success_rate
            )
            stats["test_running_success_rate"] = test_running_success_rate
            stats["test_success_rate"] = test_success_rate
            tqrange.set_postfix(stats)

            if log_wandb:
                wandb.log(stats)

            if test_running_success_rate > 0.99:
                if save_best:
                    if self.run_name is None:
                        print("WARNING: run_name is None, not saving best policy.")
                    else:
                        self.save_policy(self.run_name, save_best_dir)

                if early_stopping:
                    print(
                        f"CONVERGED: test success rate running avg reached 100% after {e} episodes."
                    )
                    break

    def wandb_log_img(self, episode=None):
        caption_suffix = "Initial" if episode is None else f"After Episode {episode}"
        wandb.log(
            {
                "Q-table": wandb.Image(
                    self.Q,
                    caption=f"Q-table - {caption_suffix}",
                ),
                "Policy": wandb.Image(
                    self.Pi,
                    caption=f"Policy - {caption_suffix}",
                ),
            }
        )