Spaces:
Sleeping
Sleeping
File size: 12,257 Bytes
0ceb721 73cd2cf 0ceb721 879176c 0ceb721 879176c 0ceb721 73cd2cf 0ceb721 73cd2cf 080e344 0ceb721 080e344 0ceb721 080e344 0ceb721 080e344 0ceb721 f422d2f 0ceb721 cb18290 0ceb721 cb18290 0ceb721 fe4182f cb18290 0ceb721 fe4182f cb18290 0ceb721 73cd2cf cb18290 0ceb721 73cd2cf 080e344 73cd2cf 370ef8f 0ceb721 cb18290 0ceb721 73cd2cf cb18290 0ceb721 cb18290 0ceb721 cb18290 0ceb721 cb18290 0ceb721 ec64bb9 0ceb721 ec64bb9 0ceb721 45b1b2a 0ceb721 370ef8f 0ceb721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import numpy as np
import gymnasium as gym
from tqdm import tqdm
import argparse
import wandb
class MonteCarloAgent:
def __init__(self, env_name="CliffWalking-v0", gamma=0.99, epsilon=0.1, **kwargs):
print(f"# MonteCarloAgent - {env_name}")
print(f"- epsilon: {epsilon}")
print(f"- gamma: {gamma}")
self.env = gym.make(env_name, **kwargs)
self.epsilon, self.gamma = epsilon, gamma
self.n_states, self.n_actions = (
self.env.observation_space.n,
self.env.action_space.n,
)
print(f"- n_states: {self.n_states}")
print(f"- n_actions: {self.n_actions}")
self.reset()
def reset(self):
print("Resetting all state variables...")
self.Q = np.zeros((self.n_states, self.n_actions))
self.R = [[[] for _ in range(self.n_actions)] for _ in range(self.n_states)]
# An arbitrary e-greedy policy
self.Pi = np.full(
(self.n_states, self.n_actions), self.epsilon / self.n_actions
)
self.Pi[
np.arange(self.n_states),
np.random.randint(self.n_actions, size=self.n_states),
] = (
1 - self.epsilon + self.epsilon / self.n_actions
)
print("=" * 80)
print("Initial policy:")
print(self.Pi)
print("=" * 80)
def choose_action(self, state):
# Sample an action from the policy
return np.random.choice(self.n_actions, p=self.Pi[state])
def run_episode(self, max_steps=500, **kwargs):
state, _ = self.env.reset()
episode_hist = []
finished = False
# Generate an episode following the current policy
for _ in range(max_steps):
# Sample an action from the policy
action = self.choose_action(state)
# Take the action and observe the reward and next state
next_state, reward, finished, truncated, _ = self.env.step(action)
# Keeping track of the trajectory
episode_hist.append((state, action, reward))
state = next_state
# This is where the agent got to the goal.
# In the case in which agent jumped off the cliff, it is simply respawned at the start position without termination.
if finished or truncated:
break
return episode_hist, finished
def update_first_visit(self, episode_hist):
G = 0
# For each step of the episode, in reverse order
for t in range(len(episode_hist) - 1, -1, -1):
state, action, reward = episode_hist[t]
# Update the expected return
G = self.gamma * G + reward
# If we haven't already visited this state-action pair up to this point, then we can update the Q-table and policy
# This is the first-visit MC method
if (state, action) not in [(x[0], x[1]) for x in episode_hist[:t]]:
self.R[state][action].append(G)
self.Q[state, action] = np.mean(self.R[state][action])
# Epsilon-greedy policy update
self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions)
# the greedy action is the one with the highest Q-value
self.Pi[state, np.argmax(self.Q[state])] = (
1 - self.epsilon + self.epsilon / self.n_actions
)
def update_every_visit(self, episode_hist):
G = 0
# For each step of the episode, in reverse order
for t in range(len(episode_hist) - 1, -1, -1):
state, action, reward = episode_hist[t]
# Update the expected return
G = self.gamma * G + reward
# We update the Q-table and policy even if we have visited this state-action pair before
# This is the every-visit MC method
self.R[state][action].append(G)
self.Q[state, action] = np.mean(self.R[state][action])
# Epsilon-greedy policy update
self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions)
# the greedy action is the one with the highest Q-value
self.Pi[state, np.argmax(self.Q[state])] = (
1 - self.epsilon + self.epsilon / self.n_actions
)
def train(
self,
n_train_episodes=2000,
test_every=100,
update_type="first_visit",
log_wandb=False,
**kwargs,
):
print(f"Training agent for {n_train_episodes} episodes...")
train_running_success_rate, test_success_rate = 0.0, 0.0
stats = {
"train_running_success_rate": train_running_success_rate,
"test_success_rate": test_success_rate,
}
update_func = getattr(self, f"update_{update_type}")
tqrange = tqdm(range(n_train_episodes))
tqrange.set_description("Training")
if log_wandb:
self.wandb_log_img(episode=None)
for e in tqrange:
episode_hist, finished = self.run_episode(**kwargs)
rewards = [x[2] for x in episode_hist]
total_reward, avg_reward = sum(rewards), np.mean(rewards)
train_running_success_rate = (
0.99 * train_running_success_rate + 0.01 * finished
)
update_func(episode_hist)
stats = {
"train_running_success_rate": train_running_success_rate,
"test_success_rate": test_success_rate,
"total_reward": total_reward,
"avg_reward": avg_reward,
}
tqrange.set_postfix(stats)
if e % test_every == 0:
test_success_rate = self.test(verbose=False, **kwargs)
if log_wandb:
self.wandb_log_img(episode=e)
stats["test_success_rate"] = test_success_rate
tqrange.set_postfix(stats)
if log_wandb:
wandb.log(stats)
def test(self, n_test_episodes=100, verbose=True, **kwargs):
if verbose:
print(f"Testing agent for {n_test_episodes} episodes...")
num_successes = 0
for e in range(n_test_episodes):
_, finished = self.run_episode(**kwargs)
num_successes += finished
if verbose:
word = "reached" if finished else "did not reach"
emoji = "🏁" if finished else "🚫"
print(
f"({e + 1:>{len(str(n_test_episodes))}}/{n_test_episodes}) - Agent {word} the goal {emoji}"
)
success_rate = num_successes / n_test_episodes
if verbose:
print(
f"Agent reached the goal in {num_successes}/{n_test_episodes} episodes ({success_rate * 100:.2f}%)"
)
return success_rate
def save_policy(self, fname="policy.npy"):
print(f"Saving policy to {fname}")
np.save(fname, self.Pi)
def load_policy(self, fname="policy.npy"):
print(f"Loading policy from {fname}")
self.Pi = np.load(fname)
def wandb_log_img(self, episode=None, mask=None):
caption_suffix = "Initial" if episode is None else f"After Episode {episode}"
wandb.log(
{
"Q-table": wandb.Image(
self.Q,
caption=f"Q-table - {caption_suffix}",
),
"Policy": wandb.Image(
self.Pi,
caption=f"Policy - {caption_suffix}",
),
}
)
def main():
parser = argparse.ArgumentParser()
### Train/Test parameters
parser.add_argument(
"--train",
action="store_true",
help="Use this flag to train the agent.",
)
parser.add_argument(
"--test",
type=str,
default=None,
help="Use this flag to test the agent. Provide the path to the policy file.",
)
parser.add_argument(
"--n_train_episodes",
type=int,
default=2000,
help="The number of episodes to train for. (default: 2000)",
)
parser.add_argument(
"--n_test_episodes",
type=int,
default=100,
help="The number of episodes to test for. (default: 100)",
)
parser.add_argument(
"--test_every",
type=int,
default=100,
help="During training, test the agent every n episodes. (default: 100)",
)
parser.add_argument(
"--max_steps",
type=int,
default=500,
help="The maximum number of steps per episode before the episode is forced to end. (default: 500)",
)
parser.add_argument(
"--update_type",
type=str,
choices=["first_visit", "every_visit"],
default="first_visit",
help="The type of update to use. (default: first_visit)",
)
parser.add_argument(
"--no_save",
action="store_true",
help="Use this flag to disable saving the policy.",
)
### Agent parameters
parser.add_argument(
"--gamma",
type=float,
default=0.99,
help="The value for the discount factor to use. (default: 0.99)",
)
parser.add_argument(
"--epsilon",
type=float,
default=0.7,
help="The value for the epsilon-greedy policy to use. (default: 0.1)",
)
### Environment parameters
parser.add_argument(
"--env",
type=str,
default="CliffWalking-v0",
help="The Gymnasium environment to use. (default: CliffWalking-v0)",
)
parser.add_argument(
"--render_mode",
type=str,
default=None,
help="Render mode passed to the gym.make() function. Use 'human' to render the environment. (default: None)",
)
parser.add_argument(
"--wandb_project",
type=str,
default=None,
help="WandB project name for logging. If not provided, no logging is done. (default: None)",
)
parser.add_argument(
"--wandb_group",
type=str,
default="monte-carlo",
help="WandB group name for logging. (default: monte-carlo)",
)
parser.add_argument(
"--wandb_job_type",
type=str,
default="train",
help="WandB job type for logging. (default: train)",
)
parser.add_argument(
"--wandb_run_name_suffix",
type=str,
default=None,
help="WandB run name suffix for logging. (default: None)",
)
args = parser.parse_args()
mca = MonteCarloAgent(
args.env,
gamma=args.gamma,
epsilon=args.epsilon,
render_mode=args.render_mode,
)
run_name = f"mc_{args.env}_e{args.n_train_episodes}_s{args.max_steps}_g{args.gamma}_e{args.epsilon}"
if args.wandb_run_name_suffix is not None:
run_name += f"+{args.wandb_run_name_suffix}"
try:
if args.train:
# Log to WandB
if args.wandb_project is not None:
wandb.init(
project=args.wandb_project,
name=run_name,
group=args.wandb_group,
job_type=args.wandb_job_type,
config=dict(args._get_kwargs()),
)
mca.train(
n_train_episodes=args.n_train_episodes,
test_every=args.test_every,
n_test_episodes=args.n_test_episodes,
max_steps=args.max_steps,
update_type=args.update_type,
log_wandb=args.wandb_project is not None,
)
if not args.no_save:
mca.save_policy(fname=f"policy_{run_name}.npy")
elif args.test is not None:
if not args.test.endswith(".npy"):
args.test += ".npy"
mca.load_policy(args.test)
mca.test(
n_test_episodes=args.n_test_episodes,
max_steps=args.max_steps,
)
else:
print("ERROR: Please provide either --train or --test.")
except KeyboardInterrupt:
print("Exiting...")
if __name__ == "__main__":
main()
|