File size: 1,924 Bytes
46b0409
 
 
 
 
 
0f41753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b0409
0f41753
46b0409
0f41753
 
46b0409
0f41753
 
 
 
 
 
 
46b0409
0f41753
 
 
 
 
 
 
 
 
 
 
46b0409
 
0f41753
 
 
 
 
 
 
 
 
46b0409
 
0f41753
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import os
import multiprocessing
import random


# argument parsing
parser = argparse.ArgumentParser(description="Run parameter tests for MC agent")
parser.add_argument(
    "--env",
    type=str,
    default="Taxi-v3",
    help="environment to run",
)
parser.add_argument(
    "--num_tests",
    type=int,
    default=25,
    help="number of tests to run for each parameter combination",
)
parser.add_argument(
    "--wandb_project",
    type=str,
    default=None,
    help="wandb project name to log to",
)

args = parser.parse_args()

env, num_tests, wandb_project = args.env, args.num_tests, args.wandb_project
agent = "MCAgent"

vals_update_type = [
    "first_visit"
]  # Note: Every visit takes too long due to these environment's reward structure
vals_gamma = [1.0, 0.98, 0.96, 0.94]
vals_epsilon = [0.1, 0.2, 0.3, 0.4, 0.5]
# vals_gamma = [1.0]
# vals_epsilon = [0.5]

if env == "CliffWalking-v0":
    n_train_episodes = 2500
    max_steps = 200
elif env == "FrozenLake-v1":
    n_train_episodes = 5000
    max_steps = 200
elif env == "Taxi-v3":
    n_train_episodes = 10000
    max_steps = 500
else:
    raise ValueError(f"Unsupported environment: {env}")


def run_test(args):
    command = f"python3 run.py --train --agent {agent} --env {env}"
    command += f" --n_train_episodes {n_train_episodes} --max_steps {max_steps}"
    command += f" --gamma {args[0]} --epsilon {args[1]} --update_type {args[2]}"
    command += f" --run_name_suffix {args[3]}"
    if wandb_project is not None:
        command += f" --wandb_project {wandb_project}"
    command += " --no_save"
    os.system(command)


with multiprocessing.Pool(8) as p:
    tests = []
    for update_type in vals_update_type:
        for gamma in vals_gamma:
            for eps in vals_epsilon:
                tests.extend((gamma, eps, update_type, i) for i in range(num_tests))
    random.shuffle(tests)

    p.map(run_test, tests)