Spaces:
Sleeping
Sleeping
import os | |
import time | |
import numpy as np | |
import gradio as gr | |
from MonteCarloAgent import MonteCarloAgent | |
import scipy.ndimage | |
import cv2 | |
default_n_test_episodes = 10 | |
default_max_steps = 500 | |
# For the dropdown list of policies | |
policies_folder = "policies" | |
try: | |
all_policies = [ | |
file for file in os.listdir(policies_folder) if file.endswith(".npy") | |
] | |
except FileNotFoundError: | |
print("ERROR: No policies folder found!") | |
all_policies = [] | |
# All supported agents | |
agent_map = { | |
"MonteCarloAgent": MonteCarloAgent, | |
# TODO: Add DP Agent | |
} | |
action_map = { | |
"CliffWalking-v0": { | |
0: "up", | |
1: "right", | |
2: "down", | |
3: "left", | |
}, | |
} | |
# Global variables to allow changing it on the fly | |
live_render_fps = 5 | |
live_epsilon = 0.0 | |
live_paused = False | |
live_steps_forward = None | |
def change_render_fps(x): | |
print("Changing render fps:", x) | |
global live_render_fps | |
live_render_fps = x | |
def change_epsilon(x): | |
print("Changing greediness:", x) | |
global live_epsilon | |
live_epsilon = x | |
def change_paused(x): | |
print("Changing paused:", x) | |
val_map = { | |
"▶️ Resume": False, | |
"⏸️ Pause": True, | |
} | |
val_map_inv = {v: k for k, v in val_map.items()} | |
global live_paused | |
live_paused = val_map[x] | |
next_val = val_map_inv[not live_paused] | |
return gr.update(value=next_val), gr.update(interactive=live_paused) | |
def onclick_btn_forward(): | |
print("Step forward") | |
global live_steps_forward | |
if live_steps_forward is None: | |
live_steps_forward = 0 | |
live_steps_forward += 1 | |
def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon): | |
global live_render_fps, live_epsilon, live_paused, live_steps_forward | |
live_render_fps = render_fps | |
live_epsilon = epsilon | |
print("=" * 80) | |
print("Running...") | |
print(f"- policy_fname: {policy_fname}") | |
print(f"- n_test_episodes: {n_test_episodes}") | |
print(f"- max_steps: {max_steps}") | |
print(f"- render_fps: {live_render_fps}") | |
print(f"- epsilon: {live_epsilon}") | |
policy_path = os.path.join(policies_folder, policy_fname) | |
props = policy_fname.split("_") | |
if len(props) < 2: | |
yield None, None, None, None, None, None, None, None, None, None, "🚫 Please select a valid policy file." | |
return | |
agent_type, env_name = props[0], props[1] | |
agent = agent_map[agent_type](env_name, render_mode="rgb_array") | |
agent.load_policy(policy_path) | |
env_action_map = action_map.get(env_name) | |
solved, rgb_array, policy_viz = None, None, None | |
episode, step, state, action, reward, last_reward = ( | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
) | |
episodes_solved = 0 | |
def ep_str(episode): | |
return ( | |
f"{episode} / {n_test_episodes} ({(episode) / n_test_episodes * 100:.2f}%)" | |
) | |
def step_str(step): | |
return f"{step + 1}" | |
for episode in range(n_test_episodes): | |
for step, (episode_hist, solved, rgb_array) in enumerate( | |
agent.generate_episode( | |
max_steps=max_steps, render=True, override_epsilon=True | |
) | |
): | |
if live_steps_forward is not None: | |
if live_steps_forward > 0: | |
live_steps_forward -= 1 | |
if live_steps_forward == 0: | |
live_steps_forward = None | |
live_paused = True | |
_, _, last_reward = ( | |
episode_hist[-2] if len(episode_hist) > 1 else (None, None, None) | |
) | |
state, action, reward = episode_hist[-1] | |
curr_policy = agent.Pi[state] | |
viz_w = 512 | |
viz_h = viz_w // len(curr_policy) | |
policy_viz = np.zeros((viz_h, viz_w)) | |
for i, p in enumerate(curr_policy): | |
policy_viz[ | |
:, | |
i | |
* (viz_w // len(curr_policy)) : (i + 1) | |
* (viz_w // len(curr_policy)), | |
] = p | |
policy_viz = scipy.ndimage.gaussian_filter(policy_viz, sigma=1.0) | |
policy_viz = np.clip( | |
policy_viz * (1.0 - live_epsilon) + live_epsilon / len(curr_policy), | |
0.0, | |
1.0, | |
) | |
cv2.putText( | |
policy_viz, | |
str(action), | |
( | |
int((action + 0.5) * viz_w // len(curr_policy) - 8), | |
viz_h // 2 - 10, | |
), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
1.0, | |
1.0, | |
2, | |
cv2.LINE_AA, | |
) | |
if env_action_map: | |
action_name = env_action_map.get(action, action) | |
cv2.putText( | |
policy_viz, | |
action_name, | |
( | |
int( | |
(action + 0.5) * viz_w // len(curr_policy) | |
- 5 * len(action_name) | |
), | |
viz_h // 2 + 20, | |
), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.6, | |
1.0, | |
2, | |
cv2.LINE_AA, | |
) | |
print( | |
f"Episode: {ep_str(episode + 1)} - step: {step_str(step)} - state: {state} - action: {action} - reward: {reward} (epsilon: {live_epsilon:.2f}) (frame time: {1 / render_fps:.2f}s)" | |
) | |
# Live-update the agent's epsilon value for demonstration purposes | |
agent.epsilon = live_epsilon | |
yield agent_type, env_name, rgb_array, policy_viz, ep_str( | |
episode + 1 | |
), ep_str(episodes_solved), step_str( | |
step | |
), state, action, last_reward, "Running..." | |
time.sleep(1 / live_render_fps) | |
while live_paused and live_steps_forward is None: | |
yield agent_type, env_name, rgb_array, policy_viz, ep_str( | |
episode + 1 | |
), ep_str(episodes_solved), step_str( | |
step | |
), state, action, last_reward, "Paused..." | |
time.sleep(1 / live_render_fps) | |
if solved: | |
episodes_solved += 1 | |
yield agent_type, env_name, rgb_array, policy_viz, ep_str(episode + 1), ep_str( | |
episodes_solved | |
), step_str(step), state, action, reward, "Done!" | |
with gr.Blocks(title="CS581 Demo") as demo: | |
gr.components.HTML( | |
"<h1>Reinforcement Learning: From Dynamic Programming to Monte-Carlo (Demo)</h1>" | |
) | |
gr.components.HTML("<h3>Authors: Andrei Cozma and Landon Harris</h3>") | |
gr.components.HTML("<h2>Select Configuration:</h2>") | |
with gr.Row(): | |
input_policy = gr.components.Dropdown( | |
label="Policy Checkpoint", | |
choices=all_policies, | |
value=all_policies[0] if all_policies else "No policies found :(", | |
) | |
out_environment = gr.components.Textbox(label="Resolved Environment") | |
out_agent = gr.components.Textbox(label="Resolved Agent") | |
with gr.Row(): | |
input_n_test_episodes = gr.components.Slider( | |
minimum=1, | |
maximum=1000, | |
value=default_n_test_episodes, | |
label="Number of episodes", | |
) | |
input_max_steps = gr.components.Slider( | |
minimum=1, | |
maximum=1000, | |
value=default_max_steps, | |
label="Max steps per episode", | |
) | |
btn_run = gr.components.Button("▶️ Start", interactive=bool(all_policies)) | |
gr.components.HTML("<h2>Live Statistics & Policy Visualization:</h2>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
out_episode = gr.components.Textbox(label="Current Episode") | |
out_step = gr.components.Textbox(label="Current Step") | |
out_eps_solved = gr.components.Textbox(label="Episodes Solved") | |
with gr.Row(): | |
out_state = gr.components.Textbox(label="Current State") | |
out_action = gr.components.Textbox(label="Chosen Action") | |
out_reward = gr.components.Textbox(label="Last Reward") | |
out_image_policy = gr.components.Image( | |
value=np.ones((16, 128)), | |
label="Action Sampled vs Policy Distribution for Current State", | |
type="numpy", | |
image_mode="RGB", | |
) | |
gr.components.HTML("<h2>Live Customization:</h2>") | |
with gr.Row(): | |
input_epsilon = gr.components.Slider( | |
minimum=0, | |
maximum=1, | |
value=live_epsilon, | |
label="Epsilon (0 = greedy, 1 = random)", | |
) | |
input_epsilon.change(change_epsilon, inputs=[input_epsilon]) | |
input_render_fps = gr.components.Slider( | |
minimum=1, maximum=60, value=live_render_fps, label="Simulation speed (fps)" | |
) | |
input_render_fps.change(change_render_fps, inputs=[input_render_fps]) | |
out_image_frame = gr.components.Image( | |
label="Environment", type="numpy", image_mode="RGB" | |
) | |
with gr.Row(): | |
btn_pause = gr.components.Button("⏸️ Pause", interactive=True) | |
btn_forward = gr.components.Button("⏩ Step", interactive=False) | |
btn_pause.click( | |
fn=change_paused, | |
inputs=[btn_pause], | |
outputs=[btn_pause, btn_forward], | |
) | |
btn_forward.click( | |
fn=onclick_btn_forward, | |
) | |
out_msg = gr.components.Textbox( | |
value="" | |
if all_policies | |
else "ERROR: No policies found! Please train an agent first or add a policy to the policies folder.", | |
label="Status Message", | |
) | |
btn_run.click( | |
fn=run, | |
inputs=[ | |
input_policy, | |
input_n_test_episodes, | |
input_max_steps, | |
input_render_fps, | |
input_epsilon, | |
], | |
outputs=[ | |
out_agent, | |
out_environment, | |
out_image_frame, | |
out_image_policy, | |
out_episode, | |
out_eps_solved, | |
out_step, | |
out_state, | |
out_action, | |
out_reward, | |
out_msg, | |
], | |
) | |
demo.queue(concurrency_count=2) | |
demo.launch() | |