Spaces:
Sleeping
Sleeping
Andrei Cozma
commited on
Commit
·
53c3925
1
Parent(s):
1663f39
Updates
Browse files
MonteCarloAgent.py
CHANGED
@@ -27,9 +27,18 @@ class MonteCarloAgent:
|
|
27 |
|
28 |
self.env_kwargs = kwargs
|
29 |
if self.env_name == "FrozenLake-v1":
|
30 |
-
self.env_kwargs["desc"] =
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
self.env = gym.make(self.env_name, **self.env_kwargs)
|
35 |
|
@@ -67,7 +76,7 @@ class MonteCarloAgent:
|
|
67 |
# The ability to override was mostly added for testing purposes and for the demo.
|
68 |
greedy_action = np.argmax(self.Pi[state])
|
69 |
|
70 |
-
if greedy:
|
71 |
return greedy_action
|
72 |
|
73 |
if epsilon_override is None:
|
@@ -80,21 +89,30 @@ class MonteCarloAgent:
|
|
80 |
|
81 |
def generate_episode(self, max_steps=500, render=False, **kwargs):
|
82 |
state, _ = self.env.reset()
|
83 |
-
episode_hist, solved, rgb_array =
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Generate an episode following the current policy
|
86 |
-
|
87 |
-
rgb_array = self.env.render() if render else None
|
88 |
-
|
89 |
# Sample an action from the policy
|
90 |
action = self.choose_action(state, **kwargs)
|
91 |
# Take the action and observe the reward and next state
|
92 |
-
next_state, reward, done,
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# Keeping track of the trajectory
|
95 |
episode_hist.append((state, action, reward))
|
96 |
yield episode_hist, solved, rgb_array
|
97 |
|
|
|
98 |
# For CliffWalking-v0 and Taxi-v3, the episode is solved when it terminates
|
99 |
if done and (
|
100 |
self.env_name == "CliffWalking-v0" or self.env_name == "Taxi-v3"
|
@@ -103,12 +121,17 @@ class MonteCarloAgent:
|
|
103 |
break
|
104 |
|
105 |
# For FrozenLake-v1, the episode terminates when the agent moves into a hole or reaches the goal
|
106 |
-
# We consider the episode solved when the agent reaches the goal
|
107 |
-
if done and self.env_name == "FrozenLake-v1"
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
112 |
break
|
113 |
|
114 |
state = next_state
|
|
|
27 |
|
28 |
self.env_kwargs = kwargs
|
29 |
if self.env_name == "FrozenLake-v1":
|
30 |
+
self.env_kwargs["desc"] = [
|
31 |
+
"SFFFFFFF",
|
32 |
+
"FFFFFFFH",
|
33 |
+
"FFFHFFFF",
|
34 |
+
"FFFFFHFF",
|
35 |
+
"FFFHFFFF",
|
36 |
+
"FHHFFFHF",
|
37 |
+
"FHFFHFHF",
|
38 |
+
"FFFHFFFG",
|
39 |
+
]
|
40 |
+
# self.env_kwargs["map_name"] = "8x8"
|
41 |
+
self.env_kwargs["is_slippery"] = False
|
42 |
|
43 |
self.env = gym.make(self.env_name, **self.env_kwargs)
|
44 |
|
|
|
76 |
# The ability to override was mostly added for testing purposes and for the demo.
|
77 |
greedy_action = np.argmax(self.Pi[state])
|
78 |
|
79 |
+
if greedy or epsilon_override == 0:
|
80 |
return greedy_action
|
81 |
|
82 |
if epsilon_override is None:
|
|
|
89 |
|
90 |
def generate_episode(self, max_steps=500, render=False, **kwargs):
|
91 |
state, _ = self.env.reset()
|
92 |
+
episode_hist, solved, rgb_array = (
|
93 |
+
[],
|
94 |
+
False,
|
95 |
+
self.env.render() if render else None,
|
96 |
+
)
|
97 |
|
98 |
# Generate an episode following the current policy
|
99 |
+
for _ in range(max_steps):
|
|
|
|
|
100 |
# Sample an action from the policy
|
101 |
action = self.choose_action(state, **kwargs)
|
102 |
# Take the action and observe the reward and next state
|
103 |
+
next_state, reward, done, _, _ = self.env.step(action)
|
104 |
+
|
105 |
+
if self.env_name == "FrozenLake-v1":
|
106 |
+
if done:
|
107 |
+
reward = 100 if reward == 1 else -10
|
108 |
+
else:
|
109 |
+
reward = -1
|
110 |
|
111 |
# Keeping track of the trajectory
|
112 |
episode_hist.append((state, action, reward))
|
113 |
yield episode_hist, solved, rgb_array
|
114 |
|
115 |
+
rgb_array = self.env.render() if render else None
|
116 |
# For CliffWalking-v0 and Taxi-v3, the episode is solved when it terminates
|
117 |
if done and (
|
118 |
self.env_name == "CliffWalking-v0" or self.env_name == "Taxi-v3"
|
|
|
121 |
break
|
122 |
|
123 |
# For FrozenLake-v1, the episode terminates when the agent moves into a hole or reaches the goal
|
124 |
+
# We consider the episode solved when the agent reaches the goal
|
125 |
+
if done and self.env_name == "FrozenLake-v1":
|
126 |
+
if next_state == self.env.nrow * self.env.ncol - 1:
|
127 |
+
solved = True
|
128 |
+
# print("Solved!")
|
129 |
+
break
|
130 |
+
else:
|
131 |
+
done = False
|
132 |
+
next_state, _ = self.env.reset()
|
133 |
+
|
134 |
+
if solved or done:
|
135 |
break
|
136 |
|
137 |
state = next_state
|
demo.py
CHANGED
@@ -134,6 +134,8 @@ def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon):
|
|
134 |
return f"{step + 1}"
|
135 |
|
136 |
for episode in range(n_test_episodes):
|
|
|
|
|
137 |
for step, (episode_hist, solved, rgb_array) in enumerate(
|
138 |
agent.generate_episode(
|
139 |
max_steps=max_steps, render=True, epsilon_override=live_epsilon
|
@@ -145,7 +147,7 @@ def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon):
|
|
145 |
state, action, reward = episode_hist[-1]
|
146 |
curr_policy = agent.Pi[state]
|
147 |
|
148 |
-
rgb_array_height, rgb_array_width =
|
149 |
rgb_array = cv2.resize(
|
150 |
rgb_array,
|
151 |
(
|
@@ -202,7 +204,7 @@ def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon):
|
|
202 |
)
|
203 |
|
204 |
if env_action_map:
|
205 |
-
action_name = env_action_map.get(action,
|
206 |
|
207 |
cv2.putText(
|
208 |
policy_viz,
|
@@ -222,7 +224,7 @@ def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon):
|
|
222 |
)
|
223 |
|
224 |
print(
|
225 |
-
f"Episode: {ep_str(episode + 1)} - step: {step_str(step)} - state: {state} - action: {action} - reward: {reward} (epsilon: {live_epsilon:.2f}) (frame time: {1 /
|
226 |
)
|
227 |
|
228 |
yield agent_type, env_name, rgb_array, policy_viz, ep_str(
|
@@ -396,5 +398,5 @@ with gr.Blocks(title="CS581 Demo") as demo:
|
|
396 |
],
|
397 |
)
|
398 |
|
399 |
-
demo.queue(concurrency_count=
|
400 |
demo.launch()
|
|
|
134 |
return f"{step + 1}"
|
135 |
|
136 |
for episode in range(n_test_episodes):
|
137 |
+
time.sleep(1.0)
|
138 |
+
|
139 |
for step, (episode_hist, solved, rgb_array) in enumerate(
|
140 |
agent.generate_episode(
|
141 |
max_steps=max_steps, render=True, epsilon_override=live_epsilon
|
|
|
147 |
state, action, reward = episode_hist[-1]
|
148 |
curr_policy = agent.Pi[state]
|
149 |
|
150 |
+
rgb_array_height, rgb_array_width = 150, 512
|
151 |
rgb_array = cv2.resize(
|
152 |
rgb_array,
|
153 |
(
|
|
|
204 |
)
|
205 |
|
206 |
if env_action_map:
|
207 |
+
action_name = env_action_map.get(action, "")
|
208 |
|
209 |
cv2.putText(
|
210 |
policy_viz,
|
|
|
224 |
)
|
225 |
|
226 |
print(
|
227 |
+
f"Episode: {ep_str(episode + 1)} - step: {step_str(step)} - state: {state} - action: {action} - reward: {reward} (epsilon: {live_epsilon:.2f}) (frame time: {1 / live_render_fps:.2f}s)"
|
228 |
)
|
229 |
|
230 |
yield agent_type, env_name, rgb_array, policy_viz, ep_str(
|
|
|
398 |
],
|
399 |
)
|
400 |
|
401 |
+
demo.queue(concurrency_count=2)
|
402 |
demo.launch()
|
policies/MonteCarloAgent_FrozenLake-v1_e2500_s200_g1.0_e0.2_first_visit.npy
ADDED
Binary file (2.18 kB). View file
|
|