Spaces:
Sleeping
Sleeping
Andrei Cozma
commited on
Commit
·
b8a5bf6
1
Parent(s):
a7331e4
Updates
Browse files- MonteCarloAgent.py +3 -149
- Shared.py +163 -0
MonteCarloAgent.py
CHANGED
@@ -5,50 +5,14 @@ from tqdm import tqdm
|
|
5 |
import argparse
|
6 |
from gymnasium.envs.toy_text.frozen_lake import generate_random_map
|
7 |
import wandb
|
|
|
8 |
|
9 |
-
|
10 |
-
class MonteCarloAgent:
|
11 |
def __init__(
|
12 |
self,
|
13 |
-
env_name="CliffWalking-v0",
|
14 |
-
gamma=0.99,
|
15 |
-
epsilon=0.1,
|
16 |
-
run_name=None,
|
17 |
**kwargs,
|
18 |
):
|
19 |
-
|
20 |
-
print(f"# MonteCarloAgent - {env_name}")
|
21 |
-
print(f"- epsilon: {epsilon}")
|
22 |
-
print(f"- gamma: {gamma}")
|
23 |
-
print(f"- run_name: {run_name}")
|
24 |
-
self.run_name = run_name
|
25 |
-
self.env_name = env_name
|
26 |
-
self.epsilon, self.gamma = epsilon, gamma
|
27 |
-
|
28 |
-
self.env_kwargs = kwargs
|
29 |
-
if self.env_name == "FrozenLake-v1":
|
30 |
-
# Can use defaults by defining map_name (4x4 or 8x8) or custom map by defining desc
|
31 |
-
# self.env_kwargs["map_name"] = "8x8"
|
32 |
-
self.env_kwargs["desc"] = [
|
33 |
-
"SFFFFFFF",
|
34 |
-
"FFFFFFFH",
|
35 |
-
"FFFHFFFF",
|
36 |
-
"FFFFFHFF",
|
37 |
-
"FFFHFFFF",
|
38 |
-
"FHHFFFHF",
|
39 |
-
"FHFFHFHF",
|
40 |
-
"FFFHFFFG",
|
41 |
-
]
|
42 |
-
self.env_kwargs["is_slippery"] = False
|
43 |
-
|
44 |
-
self.env = gym.make(self.env_name, **self.env_kwargs)
|
45 |
-
|
46 |
-
self.n_states, self.n_actions = (
|
47 |
-
self.env.observation_space.n,
|
48 |
-
self.env.action_space.n,
|
49 |
-
)
|
50 |
-
print(f"- n_states: {self.n_states}")
|
51 |
-
print(f"- n_actions: {self.n_actions}")
|
52 |
self.reset()
|
53 |
|
54 |
def reset(self):
|
@@ -71,85 +35,6 @@ class MonteCarloAgent:
|
|
71 |
print(self.Pi)
|
72 |
print("=" * 80)
|
73 |
|
74 |
-
def choose_action(self, state, epsilon_override=None, greedy=False, **kwargs):
|
75 |
-
# Sample an action from the policy.
|
76 |
-
# The epsilon_override argument allows forcing the use of a new epsilon value than the one previously used during training.
|
77 |
-
# The ability to override was mostly added for testing purposes and for the demo.
|
78 |
-
greedy_action = np.argmax(self.Pi[state])
|
79 |
-
|
80 |
-
if greedy or epsilon_override == 0:
|
81 |
-
return greedy_action
|
82 |
-
|
83 |
-
if epsilon_override is None:
|
84 |
-
return np.random.choice(self.n_actions, p=self.Pi[state])
|
85 |
-
|
86 |
-
return np.random.choice(
|
87 |
-
[greedy_action, np.random.randint(self.n_actions)],
|
88 |
-
p=[1 - epsilon_override, epsilon_override],
|
89 |
-
)
|
90 |
-
|
91 |
-
def generate_episode(self, max_steps=500, render=False, **kwargs):
|
92 |
-
state, _ = self.env.reset()
|
93 |
-
episode_hist, solved, rgb_array = (
|
94 |
-
[],
|
95 |
-
False,
|
96 |
-
self.env.render() if render else None,
|
97 |
-
)
|
98 |
-
|
99 |
-
# Generate an episode following the current policy
|
100 |
-
for _ in range(max_steps):
|
101 |
-
# Sample an action from the policy
|
102 |
-
action = self.choose_action(state, **kwargs)
|
103 |
-
# Take the action and observe the reward and next state
|
104 |
-
next_state, reward, done, _, _ = self.env.step(action)
|
105 |
-
|
106 |
-
if self.env_name == "FrozenLake-v1":
|
107 |
-
if done:
|
108 |
-
reward = 100 if reward == 1 else -10
|
109 |
-
else:
|
110 |
-
reward = -1
|
111 |
-
|
112 |
-
# Keeping track of the trajectory
|
113 |
-
episode_hist.append((state, action, reward))
|
114 |
-
yield episode_hist, solved, rgb_array
|
115 |
-
|
116 |
-
# Rendering new frame if needed
|
117 |
-
rgb_array = self.env.render() if render else None
|
118 |
-
|
119 |
-
# For CliffWalking-v0 and Taxi-v3, the episode is solved when it terminates
|
120 |
-
if done and self.env_name in ["CliffWalking-v0", "Taxi-v3"]:
|
121 |
-
solved = True
|
122 |
-
break
|
123 |
-
|
124 |
-
# For FrozenLake-v1, the episode terminates when the agent moves into a hole or reaches the goal
|
125 |
-
# We consider the episode solved when the agent reaches the goal
|
126 |
-
if done and self.env_name == "FrozenLake-v1":
|
127 |
-
if next_state == self.env.nrow * self.env.ncol - 1:
|
128 |
-
solved = True
|
129 |
-
break
|
130 |
-
else:
|
131 |
-
# Instead of terminating the episode when the agent moves into a hole, we reset the environment
|
132 |
-
# This is to keep consistent with the other environments
|
133 |
-
done = False
|
134 |
-
next_state, _ = self.env.reset()
|
135 |
-
|
136 |
-
if solved or done:
|
137 |
-
break
|
138 |
-
|
139 |
-
state = next_state
|
140 |
-
|
141 |
-
rgb_array = self.env.render() if render else None
|
142 |
-
yield episode_hist, solved, rgb_array
|
143 |
-
|
144 |
-
def run_episode(self, max_steps=500, render=False, **kwargs):
|
145 |
-
# Run the generator until the end
|
146 |
-
episode_hist, solved, rgb_array = None, False, None
|
147 |
-
for episode_hist, solved, rgb_array in self.generate_episode(
|
148 |
-
max_steps, render, **kwargs
|
149 |
-
):
|
150 |
-
pass
|
151 |
-
return episode_hist, solved, rgb_array
|
152 |
-
|
153 |
def update_first_visit(self, episode_hist):
|
154 |
G = 0
|
155 |
# For each step of the episode, in reverse order
|
@@ -265,37 +150,6 @@ class MonteCarloAgent:
|
|
265 |
if log_wandb:
|
266 |
wandb.log(stats)
|
267 |
|
268 |
-
def test(self, n_test_episodes=100, verbose=True, greedy=True, **kwargs):
|
269 |
-
if verbose:
|
270 |
-
print(f"Testing agent for {n_test_episodes} episodes...")
|
271 |
-
num_successes = 0
|
272 |
-
for e in range(n_test_episodes):
|
273 |
-
_, solved, _ = self.run_episode(greedy=greedy, **kwargs)
|
274 |
-
num_successes += solved
|
275 |
-
if verbose:
|
276 |
-
word = "reached" if solved else "did not reach"
|
277 |
-
emoji = "🏁" if solved else "🚫"
|
278 |
-
print(
|
279 |
-
f"({e + 1:>{len(str(n_test_episodes))}}/{n_test_episodes}) - Agent {word} the goal {emoji}"
|
280 |
-
)
|
281 |
-
|
282 |
-
success_rate = num_successes / n_test_episodes
|
283 |
-
if verbose:
|
284 |
-
print(
|
285 |
-
f"Agent reached the goal in {num_successes}/{n_test_episodes} episodes ({success_rate * 100:.2f}%)"
|
286 |
-
)
|
287 |
-
return success_rate
|
288 |
-
|
289 |
-
def save_policy(self, fname="policy.npy", save_dir=None):
|
290 |
-
if save_dir is not None:
|
291 |
-
os.makedirs(save_dir, exist_ok=True)
|
292 |
-
fname = os.path.join(save_dir, fname)
|
293 |
-
print(f"Saving policy to: {fname}")
|
294 |
-
np.save(fname, self.Pi)
|
295 |
-
|
296 |
-
def load_policy(self, fname="policy.npy"):
|
297 |
-
print(f"Loading policy from: {fname}")
|
298 |
-
self.Pi = np.load(fname)
|
299 |
|
300 |
def wandb_log_img(self, episode=None):
|
301 |
caption_suffix = "Initial" if episode is None else f"After Episode {episode}"
|
|
|
5 |
import argparse
|
6 |
from gymnasium.envs.toy_text.frozen_lake import generate_random_map
|
7 |
import wandb
|
8 |
+
from .Shared import Shared
|
9 |
|
10 |
+
class MonteCarloAgent(Shared):
|
|
|
11 |
def __init__(
|
12 |
self,
|
|
|
|
|
|
|
|
|
13 |
**kwargs,
|
14 |
):
|
15 |
+
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
self.reset()
|
17 |
|
18 |
def reset(self):
|
|
|
35 |
print(self.Pi)
|
36 |
print("=" * 80)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def update_first_visit(self, episode_hist):
|
39 |
G = 0
|
40 |
# For each step of the episode, in reverse order
|
|
|
150 |
if log_wandb:
|
151 |
wandb.log(stats)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
def wandb_log_img(self, episode=None):
|
155 |
caption_suffix = "Initial" if episode is None else f"After Episode {episode}"
|
Shared.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import gymnasium as gym
|
4 |
+
from tqdm import tqdm
|
5 |
+
import argparse
|
6 |
+
import wandb
|
7 |
+
|
8 |
+
class Shared:
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
env_name="CliffWalking-v0",
|
13 |
+
gamma=0.99,
|
14 |
+
epsilon=0.1,
|
15 |
+
run_name=None,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
print("=" * 80)
|
19 |
+
print(f"# Init Agent - {env_name}")
|
20 |
+
print(f"- epsilon: {epsilon}")
|
21 |
+
print(f"- gamma: {gamma}")
|
22 |
+
print(f"- run_name: {run_name}")
|
23 |
+
self.run_name = run_name
|
24 |
+
self.env_name = env_name
|
25 |
+
self.epsilon, self.gamma = epsilon, gamma
|
26 |
+
|
27 |
+
self.env_kwargs = kwargs
|
28 |
+
if self.env_name == "FrozenLake-v1":
|
29 |
+
# Can use defaults by defining map_name (4x4 or 8x8) or custom map by defining desc
|
30 |
+
# self.env_kwargs["map_name"] = "8x8"
|
31 |
+
self.env_kwargs["desc"] = [
|
32 |
+
"SFFFFFFF",
|
33 |
+
"FFFFFFFH",
|
34 |
+
"FFFHFFFF",
|
35 |
+
"FFFFFHFF",
|
36 |
+
"FFFHFFFF",
|
37 |
+
"FHHFFFHF",
|
38 |
+
"FHFFHFHF",
|
39 |
+
"FFFHFFFG",
|
40 |
+
]
|
41 |
+
self.env_kwargs["is_slippery"] = False
|
42 |
+
|
43 |
+
self.env = gym.make(self.env_name, **self.env_kwargs)
|
44 |
+
|
45 |
+
self.n_states, self.n_actions = (
|
46 |
+
self.env.observation_space.n,
|
47 |
+
self.env.action_space.n,
|
48 |
+
)
|
49 |
+
print(f"- n_states: {self.n_states}")
|
50 |
+
print(f"- n_actions: {self.n_actions}")
|
51 |
+
|
52 |
+
def choose_action(self, state, epsilon_override=None, greedy=False, **kwargs):
|
53 |
+
# Sample an action from the policy.
|
54 |
+
# The epsilon_override argument allows forcing the use of a new epsilon value than the one previously used during training.
|
55 |
+
# The ability to override was mostly added for testing purposes and for the demo.
|
56 |
+
greedy_action = np.argmax(self.Pi[state])
|
57 |
+
|
58 |
+
if greedy or epsilon_override == 0:
|
59 |
+
return greedy_action
|
60 |
+
|
61 |
+
if epsilon_override is None:
|
62 |
+
return np.random.choice(self.n_actions, p=self.Pi[state])
|
63 |
+
|
64 |
+
return np.random.choice(
|
65 |
+
[greedy_action, np.random.randint(self.n_actions)],
|
66 |
+
p=[1 - epsilon_override, epsilon_override],
|
67 |
+
)
|
68 |
+
|
69 |
+
def get_policy():
|
70 |
+
pass
|
71 |
+
|
72 |
+
|
73 |
+
def generate_episode(self, max_steps=500, render=False, **kwargs):
|
74 |
+
state, _ = self.env.reset()
|
75 |
+
episode_hist, solved, rgb_array = (
|
76 |
+
[],
|
77 |
+
False,
|
78 |
+
self.env.render() if render else None,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Generate an episode following the current policy
|
82 |
+
for _ in range(max_steps):
|
83 |
+
# Sample an action from the policy
|
84 |
+
action = self.choose_action(state, **kwargs)
|
85 |
+
# Take the action and observe the reward and next state
|
86 |
+
next_state, reward, done, _, _ = self.env.step(action)
|
87 |
+
|
88 |
+
if self.env_name == "FrozenLake-v1":
|
89 |
+
if done:
|
90 |
+
reward = 100 if reward == 1 else -10
|
91 |
+
else:
|
92 |
+
reward = -1
|
93 |
+
|
94 |
+
# Keeping track of the trajectory
|
95 |
+
episode_hist.append((state, action, reward))
|
96 |
+
yield episode_hist, solved, rgb_array
|
97 |
+
|
98 |
+
# Rendering new frame if needed
|
99 |
+
rgb_array = self.env.render() if render else None
|
100 |
+
|
101 |
+
# For CliffWalking-v0 and Taxi-v3, the episode is solved when it terminates
|
102 |
+
if done and self.env_name in ["CliffWalking-v0", "Taxi-v3"]:
|
103 |
+
solved = True
|
104 |
+
break
|
105 |
+
|
106 |
+
# For FrozenLake-v1, the episode terminates when the agent moves into a hole or reaches the goal
|
107 |
+
# We consider the episode solved when the agent reaches the goal
|
108 |
+
if done and self.env_name == "FrozenLake-v1":
|
109 |
+
if next_state == self.env.nrow * self.env.ncol - 1:
|
110 |
+
solved = True
|
111 |
+
break
|
112 |
+
else:
|
113 |
+
# Instead of terminating the episode when the agent moves into a hole, we reset the environment
|
114 |
+
# This is to keep consistent with the other environments
|
115 |
+
done = False
|
116 |
+
next_state, _ = self.env.reset()
|
117 |
+
|
118 |
+
if solved or done:
|
119 |
+
break
|
120 |
+
|
121 |
+
state = next_state
|
122 |
+
|
123 |
+
rgb_array = self.env.render() if render else None
|
124 |
+
yield episode_hist, solved, rgb_array
|
125 |
+
|
126 |
+
def run_episode(self, max_steps=500, render=False, **kwargs):
|
127 |
+
# Run the generator until the end
|
128 |
+
episode_hist, solved, rgb_array = list(self.generate_episode(
|
129 |
+
max_steps, render, **kwargs
|
130 |
+
))[-1]
|
131 |
+
return episode_hist, solved, rgb_array
|
132 |
+
|
133 |
+
def test(self, n_test_episodes=100, verbose=True, greedy=True, **kwargs):
|
134 |
+
if verbose:
|
135 |
+
print(f"Testing agent for {n_test_episodes} episodes...")
|
136 |
+
num_successes = 0
|
137 |
+
for e in range(n_test_episodes):
|
138 |
+
_, solved, _ = self.run_episode(greedy=greedy, **kwargs)
|
139 |
+
num_successes += solved
|
140 |
+
if verbose:
|
141 |
+
word = "reached" if solved else "did not reach"
|
142 |
+
emoji = "🏁" if solved else "🚫"
|
143 |
+
print(
|
144 |
+
f"({e + 1:>{len(str(n_test_episodes))}}/{n_test_episodes}) - Agent {word} the goal {emoji}"
|
145 |
+
)
|
146 |
+
|
147 |
+
success_rate = num_successes / n_test_episodes
|
148 |
+
if verbose:
|
149 |
+
print(
|
150 |
+
f"Agent reached the goal in {num_successes}/{n_test_episodes} episodes ({success_rate * 100:.2f}%)"
|
151 |
+
)
|
152 |
+
return success_rate
|
153 |
+
|
154 |
+
def save_policy(self, fname="policy.npy", save_dir=None):
|
155 |
+
if save_dir is not None:
|
156 |
+
os.makedirs(save_dir, exist_ok=True)
|
157 |
+
fname = os.path.join(save_dir, fname)
|
158 |
+
print(f"Saving policy to: {fname}")
|
159 |
+
np.save(fname, self.Pi)
|
160 |
+
|
161 |
+
def load_policy(self, fname="policy.npy"):
|
162 |
+
print(f"Loading policy from: {fname}")
|
163 |
+
self.Pi = np.load(fname)
|