import os import time from matplotlib import interactive import numpy as np import gradio as gr from MonteCarloAgent import MonteCarloAgent import scipy.ndimage import cv2 default_n_test_episodes = 10 default_max_steps = 500 # For the dropdown list of policies policies_folder = "policies" try: all_policies = [ file for file in os.listdir(policies_folder) if file.endswith(".npy") ] except FileNotFoundError: print("ERROR: No policies folder found!") all_policies = [] # All supported agents agent_map = { "MonteCarloAgent": MonteCarloAgent, # TODO: Add DP Agent } action_map = { "CliffWalking-v0": { 0: "up", 1: "right", 2: "down", 3: "left", }, } # Global variables to allow changing it on the fly live_render_fps = 10 live_epsilon = 0.0 live_paused = False def change_render_fps(x): print("Changing render fps:", x) global live_render_fps live_render_fps = x def change_epsilon(x): print("Changing greediness:", x) global live_epsilon live_epsilon = x def change_paused(x): print("Changing paused:", x) global live_paused live_paused = x # change the text to resume return gr.update(value="▶️ Resume" if x else "⏸️ Pause") def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon): global live_render_fps, live_epsilon live_render_fps = render_fps live_epsilon = epsilon print("Running...") print(f"- n_test_episodes: {n_test_episodes}") print(f"- max_steps: {max_steps}") print(f"- render_fps: {live_render_fps}") policy_path = os.path.join(policies_folder, policy_fname) props = policy_fname.split("_") agent_type, env_name = props[0], props[1] agent = agent_map[agent_type](env_name, render_mode="rgb_array") agent.load_policy(policy_path) env_action_map = action_map.get(env_name) solved, rgb_array, policy_viz = None, None, None episode, step, state, action, reward = 0, 0, 0, 0, 0 episodes_solved = 0 def ep_str(episode): return f"{episode} / {n_test_episodes} ({(episode + 1) / n_test_episodes * 100:.2f}%)" def step_str(step): return f"{step + 1}" for episode in range(n_test_episodes): for step, (episode_hist, solved, rgb_array) in enumerate( agent.generate_episode( max_steps=max_steps, render=True, override_epsilon=True ) ): while live_paused: time.sleep(0.1) state, action, reward = episode_hist[-1] curr_policy = agent.Pi[state] viz_w = 512 viz_h = viz_w // len(curr_policy) policy_viz = np.zeros((viz_h, viz_w)) for i, p in enumerate(curr_policy): policy_viz[ :, i * (viz_w // len(curr_policy)) : (i + 1) * (viz_w // len(curr_policy)), ] = p policy_viz = scipy.ndimage.gaussian_filter(policy_viz, sigma=1.0) policy_viz = np.clip( policy_viz * (1.0 - live_epsilon) + live_epsilon / len(curr_policy), 0.0, 1.0, ) cv2.putText( policy_viz, str(action), ( int((action + 0.5) * viz_w // len(curr_policy) - 8), viz_h // 2 - 10, ), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 1.0, 2, cv2.LINE_AA, ) if env_action_map: action_name = env_action_map.get(action, action) cv2.putText( policy_viz, action_name, ( int( (action + 0.5) * viz_w // len(curr_policy) - 5 * len(action_name) ), viz_h // 2 + 20, ), cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1.0, 2, cv2.LINE_AA, ) print( f"Episode: {ep_str(episode + 1)} - step: {step_str(step)} - state: {state} - action: {action} - reward: {reward} (epsilon: {live_epsilon:.2f}) (frame time: {1 / render_fps:.2f}s)" ) # Live-update the agent's epsilon value for demonstration purposes agent.epsilon = live_epsilon yield agent_type, env_name, rgb_array, policy_viz, ep_str( episode + 1 ), ep_str(episodes_solved), step_str( step ), state, action, reward, "Running..." time.sleep(1 / live_render_fps) if solved: episodes_solved += 1 yield agent_type, env_name, rgb_array, policy_viz, ep_str(episode + 1), ep_str( episodes_solved ), step_str(step), state, action, reward, "Done!" with gr.Blocks(title="CS581 Demo") as demo: gr.components.HTML( "

Reinforcement Learning: From Dynamic Programming to Monte-Carlo (Demo)

" ) gr.components.HTML("

Authors: Andrei Cozma and Landon Harris

") gr.components.HTML("

Select Configuration:

") with gr.Row(): input_policy = gr.components.Dropdown( label="Policy Checkpoint", choices=all_policies, value=all_policies[0] if all_policies else "No policies found :(", ) out_environment = gr.components.Textbox(label="Resolved Environment") out_agent = gr.components.Textbox(label="Resolved Agent") with gr.Row(): input_n_test_episodes = gr.components.Slider( minimum=1, maximum=1000, value=default_n_test_episodes, label="Number of episodes", ) input_max_steps = gr.components.Slider( minimum=1, maximum=1000, value=default_max_steps, label="Max steps per episode", ) btn_run = gr.components.Button("▶️ Start", interactive=bool(all_policies)) gr.components.HTML("

Live Statistics & Policy Visualization:

") with gr.Row(): with gr.Column(): with gr.Row(): out_episode = gr.components.Textbox(label="Current Episode") out_step = gr.components.Textbox(label="Current Step") out_eps_solved = gr.components.Textbox(label="Episodes Solved") with gr.Row(): out_state = gr.components.Textbox(label="Current State") out_action = gr.components.Textbox(label="Chosen Action") out_reward = gr.components.Textbox(label="Reward Received") out_image_policy = gr.components.Image( value=np.ones((16, 128)), label="policy[state]", type="numpy", image_mode="RGB", ) gr.components.HTML("

Live Customization:

") with gr.Row(): input_epsilon = gr.components.Slider( minimum=0, maximum=1, value=live_epsilon, label="Epsilon (0 = greedy, 1 = random)", ) input_epsilon.change(change_epsilon, inputs=[input_epsilon]) input_render_fps = gr.components.Slider( minimum=1, maximum=60, value=live_render_fps, label="Simulation speed (fps)" ) input_render_fps.change(change_render_fps, inputs=[input_render_fps]) out_image_frame = gr.components.Image( label="Environment", type="numpy", image_mode="RGB" ) with gr.Row(): btn_pause = gr.components.Button("⏸️ Pause", interactive=True) btn_pause.click( fn=change_paused, inputs=[btn_pause], outputs=[btn_pause], ) out_msg = gr.components.Textbox( value="" if all_policies else "

🚫 ERROR: No policies found! Please train an agent first or add a policy to the policies folder.

", label="Status Message", ) btn_run.click( fn=run, inputs=[ input_policy, input_n_test_episodes, input_max_steps, input_render_fps, input_epsilon, ], outputs=[ out_agent, out_environment, out_image_frame, out_image_policy, out_episode, out_eps_solved, out_step, out_state, out_action, out_reward, out_msg, ], ) demo.queue(concurrency_count=3) demo.launch()