import os import time import numpy as np import gradio as gr from MonteCarloAgent import MonteCarloAgent import scipy.ndimage import cv2 default_n_test_episodes = 10 default_max_steps = 500 # For the dropdown list of policies policies_folder = "policies" try: all_policies = [ file for file in os.listdir(policies_folder) if file.endswith(".npy") ] except FileNotFoundError: print("ERROR: No policies folder found!") all_policies = [] # All supported agents agent_map = { "MonteCarloAgent": MonteCarloAgent, # TODO: Add DP Agent } action_map = { "CliffWalking-v0": { 0: "up", 1: "right", 2: "down", 3: "left", }, "FrozenLake-v1": { 0: "left", 1: "down", 2: "right", 3: "up", }, } pause_val_map = { "▶️ Resume": False, "⏸️ Pause": True, } pause_val_map_inv = {v: k for k, v in pause_val_map.items()} # Global variables to allow changing it on the fly live_render_fps = 5 live_epsilon = 0.0 live_paused = True live_steps_forward = None should_reset = False # def reset(): # global should_reset # should_reset = True def change_render_fps(x): print("Changing render fps:", x) global live_render_fps live_render_fps = x def change_epsilon(x): print("Changing greediness:", x) global live_epsilon live_epsilon = x def change_paused(x): print("Changing paused:", x) global live_paused live_paused = pause_val_map[x] next_val = pause_val_map_inv[not live_paused] return gr.update(value=next_val), gr.update(interactive=live_paused) def onclick_btn_forward(): print("Step forward") global live_steps_forward if live_steps_forward is None: live_steps_forward = 0 live_steps_forward += 1 def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon): global live_render_fps, live_epsilon, live_paused, live_steps_forward, should_reset live_render_fps = render_fps live_epsilon = epsilon live_steps_forward = None print("=" * 80) print("Running...") print(f"- policy_fname: {policy_fname}") print(f"- n_test_episodes: {n_test_episodes}") print(f"- max_steps: {max_steps}") print(f"- render_fps: {live_render_fps}") print(f"- epsilon: {live_epsilon}") policy_path = os.path.join(policies_folder, policy_fname) props = policy_fname.split("_") if len(props) < 2: yield None, None, None, None, None, None, None, None, None, None, "🚫 Please select a valid policy file." return agent_type, env_name = props[0], props[1] agent = agent_map[agent_type](env_name, render_mode="rgb_array") agent.load_policy(policy_path) env_action_map = action_map.get(env_name) solved, rgb_array, policy_viz = None, None, None episode, step, state, action, reward, last_reward = ( None, None, None, None, None, None, ) episodes_solved = 0 def ep_str(episode): return ( f"{episode} / {n_test_episodes} ({(episode) / n_test_episodes * 100:.2f}%)" ) def step_str(step): return f"{step + 1}" for episode in range(n_test_episodes): time.sleep(0.5) for step, (episode_hist, solved, rgb_array) in enumerate( agent.generate_episode( max_steps=max_steps, render=True, epsilon_override=live_epsilon ) ): _, _, last_reward = ( episode_hist[-2] if len(episode_hist) > 1 else (None, None, None) ) state, action, reward = episode_hist[-1] curr_policy = agent.Pi[state] rgb_array_height, rgb_array_width = 512, 768 rgb_array = cv2.resize( rgb_array, ( int(rgb_array.shape[1] / rgb_array.shape[0] * rgb_array_height), rgb_array_height, ), interpolation=cv2.INTER_AREA, ) if rgb_array.shape[1] < rgb_array_width: rgb_array_new = np.pad( rgb_array, ( (0, 0), ( (rgb_array_width - rgb_array.shape[1]) // 2, (rgb_array_width - rgb_array.shape[1]) // 2, ), (0, 0), ), "constant", ) rgb_array = np.uint8(rgb_array_new) viz_w = 384 viz_h = viz_w // len(curr_policy) policy_viz = np.zeros((viz_h, viz_w)) for i, p in enumerate(curr_policy): policy_viz[ :, i * (viz_w // len(curr_policy)) : (i + 1) * (viz_w // len(curr_policy)), ] = p policy_viz = scipy.ndimage.gaussian_filter(policy_viz, sigma=1.0) policy_viz = np.clip( policy_viz * (1.0 - live_epsilon) + live_epsilon / len(curr_policy), 0.0, 1.0, ) cv2.putText( policy_viz, str(action), ( int((action + 0.5) * viz_w // len(curr_policy) - 8), viz_h // 2 - 10, ), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 1.0, 2, cv2.LINE_AA, ) if env_action_map: action_name = env_action_map.get(action, "") cv2.putText( policy_viz, action_name, ( int( (action + 0.5) * viz_w // len(curr_policy) - 5 * len(action_name) ), viz_h // 2 + 20, ), cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1.0, 2, cv2.LINE_AA, ) print( f"Episode: {ep_str(episode + 1)} - step: {step_str(step)} - state: {state} - action: {action} - reward: {reward} (epsilon: {live_epsilon:.2f}) (frame time: {1 / live_render_fps:.2f}s)" ) yield agent_type, env_name, rgb_array, policy_viz, ep_str( episode + 1 ), ep_str(episodes_solved), step_str( step ), state, action, last_reward, "Running..." if live_steps_forward is not None: if live_steps_forward > 0: live_steps_forward -= 1 if live_steps_forward == 0: live_steps_forward = None live_paused = True else: time.sleep(1 / live_render_fps) while live_paused and live_steps_forward is None: yield agent_type, env_name, rgb_array, policy_viz, ep_str( episode + 1 ), ep_str(episodes_solved), step_str( step ), state, action, last_reward, "Paused..." time.sleep(1 / live_render_fps) # if should_reset is True: # break # if should_reset is True: # should_reset = False # return ( # agent_type, # env_name, # rgb_array, # policy_viz, # ep_str(episode + 1), # ep_str(episodes_solved), # step_str(step), # state, # action, # last_reward, # "Resetting...", # ) if solved: episodes_solved += 1 time.sleep(0.5) yield agent_type, env_name, rgb_array, policy_viz, ep_str(episode + 1), ep_str( episodes_solved ), step_str(step), state, action, reward, "Done!" with gr.Blocks(title="CS581 Demo") as demo: gr.components.HTML( "

CS581 Final Project Demo - Reinforcement Learning: From Dynamic Programming to Monte-Carlo

" ) gr.components.HTML("

Select Configuration:

") with gr.Row(): input_policy = gr.components.Dropdown( label="Policy Checkpoint", choices=all_policies, value=all_policies[0] if all_policies else "No policies found :(", ) out_environment = gr.components.Textbox(label="Resolved Environment") out_agent = gr.components.Textbox(label="Resolved Agent") with gr.Row(): input_n_test_episodes = gr.components.Slider( minimum=1, maximum=1000, value=default_n_test_episodes, label="Number of episodes", ) input_max_steps = gr.components.Slider( minimum=1, maximum=1000, value=default_max_steps, label="Max steps per episode", ) btn_run = gr.components.Button("👀 Select", interactive=bool(all_policies)) gr.components.HTML("

Live Visualization & Information:

") with gr.Row(): with gr.Column(): with gr.Row(): out_episode = gr.components.Textbox(label="Current Episode") out_step = gr.components.Textbox(label="Current Step") out_eps_solved = gr.components.Textbox(label="Episodes Solved") with gr.Row(): out_state = gr.components.Textbox(label="Current State") out_action = gr.components.Textbox(label="Chosen Action") out_reward = gr.components.Textbox(label="Last Reward") out_image_policy = gr.components.Image( # value=np.ones((16, 128)), # shape=(16, 128), label="Action Sampled vs Policy Distribution for Current State", type="numpy", image_mode="RGB", ) with gr.Row(): input_epsilon = gr.components.Slider( minimum=0, maximum=1, value=live_epsilon, label="Epsilon (0 = greedy, 1 = random)", ) input_epsilon.change(change_epsilon, inputs=[input_epsilon]) input_render_fps = gr.components.Slider( minimum=1, maximum=60, value=live_render_fps, label="Simulation speed (fps)" ) input_render_fps.change(change_render_fps, inputs=[input_render_fps]) out_image_frame = gr.components.Image( label="Environment", type="numpy", image_mode="RGB", shape=(512, 768) ) with gr.Row(): btn_pause = gr.components.Button( pause_val_map_inv[not live_paused], interactive=True ) btn_forward = gr.components.Button("⏩ Step") btn_pause.click( fn=change_paused, inputs=[btn_pause], outputs=[btn_pause, btn_forward], ) btn_forward.click( fn=onclick_btn_forward, ) out_msg = gr.components.Textbox( value="" if all_policies else "ERROR: No policies found! Please train an agent first or add a policy to the policies folder.", label="Status Message", ) # input_policy.change(fn=reset) btn_run.click( fn=run, inputs=[ input_policy, input_n_test_episodes, input_max_steps, input_render_fps, input_epsilon, ], outputs=[ out_agent, out_environment, out_image_frame, out_image_policy, out_episode, out_eps_solved, out_step, out_state, out_action, out_reward, out_msg, ], ) demo.queue(concurrency_count=3) demo.launch()