Spaces:
Sleeping
Sleeping
File size: 5,665 Bytes
ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc 31445d8 ebb5ffc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from langchain_text_splitters import RecursiveCharacterTextSplitter
# from langchain_experimental.text_splitter import SemanticChunker
# from langchain_openai.embeddings import OpenAIEmbeddings
from sentence_transformers import SentenceTransformer
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_core.documents import Document
system_template = """\
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
system_role_prompt = SystemRolePrompt(system_template)
user_prompt_template = """\
Context:
{context}
Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)
# class RetrievalAugmentedQAPipeline:
# def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
# self.llm = llm
# self.vector_db_retriever = vector_db_retriever
# async def arun_pipeline(self, user_query: str):
# context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
# context_prompt = ""
# for context in context_list:
# context_prompt += context[0] + "\n"
# formatted_system_prompt = system_role_prompt.create_message()
# formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
# async def generate_response():
# async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
# yield chunk
# return {"response": generate_response(), "context": context_list}
text_splitter = RecursiveCharacterTextSplitter()
def process_text_file(file: AskFileResponse):
import tempfile
from langchain_community.document_loaders.pdf import PyPDFLoader
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=file.name) as temp_file:
temp_file_path = temp_file.name
with open(temp_file_path, "wb") as f:
f.write(file.content)
if file.type == 'text/plain':
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
elif file.type == 'application/pdf':
pdf_loader = PyPDFLoader(temp_file_path)
documents = pdf_loader.load()
else:
raise ValueError("Provide a .txt or .pdf file")
texts = [x.page_content for x in text_splitter.transform_documents(documents)]
# texts = [x.page_content for x in text_splitter.split_documents(documents)]
return texts
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Please upload a Text file or a PDF to begin!",
accept=["text/plain", "application/pdf"],
max_size_mb=12,
timeout=180,
max_files=10
).send()
processed_documents = []
for file in files:
msg = cl.Message(
content=f"Processing `{file.name}`...", disable_human_feedback=True
)
await msg.send()
# load the file
texts = process_text_file(file)
processed_documents.extend(texts)
print(f"Processing {len(texts)} text chunks")
# Create a dict vector store
# vector_db = VectorDatabase()
# vector_db = await vector_db.abuild_from_list(texts)
# chat_openai = ChatOpenAI()
# Create a chain
# retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
# vector_db_retriever=vector_db,
# llm=chat_openai
# )
finetune_embeddings = HuggingFaceEmbeddings(model_name="finetuned_arctic")
finetune_vectorstore = FAISS.from_documents(processed_documents, finetune_embeddings)
finetune_retriever = finetune_vectorstore.as_retriever(search_kwargs={"k": 6})
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
rag_llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0
)
finetune_rag_chain = (
{"context": itemgetter("question") | finetune_retriever, "question": itemgetter("question")}
| RunnablePassthrough.assign(context=itemgetter("context"))
| {"response": system_template | rag_llm | StrOutputParser(), "context": itemgetter("context")}
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", finetune_rag_chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
msg = cl.Message(content="")
result = await chain.arun_pipeline(message.content)
async for stream_resp in result["response"]:
await msg.stream_token(stream_resp)
await msg.send() |