acpotts commited on
Commit
76b7bdd
·
verified ·
1 Parent(s): 61ddf88

multiple files option

Browse files
Files changed (1) hide show
  1. app.py +133 -136
app.py CHANGED
@@ -1,137 +1,134 @@
1
- import os
2
- from typing import List
3
- from chainlit.types import AskFileResponse
4
- from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
5
- from aimakerspace.openai_utils.prompts import (
6
- UserRolePrompt,
7
- SystemRolePrompt,
8
- AssistantRolePrompt,
9
- )
10
- from aimakerspace.openai_utils.embedding import EmbeddingModel
11
- from aimakerspace.vectordatabase import VectorDatabase
12
- from aimakerspace.openai_utils.chatmodel import ChatOpenAI
13
- import chainlit as cl
14
- from langchain_text_splitters import RecursiveCharacterTextSplitter
15
- # from langchain_experimental.text_splitter import SemanticChunker
16
- # from langchain_openai.embeddings import OpenAIEmbeddings
17
-
18
- system_template = """\
19
- Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
20
- system_role_prompt = SystemRolePrompt(system_template)
21
-
22
- user_prompt_template = """\
23
- Context:
24
- {context}
25
- Question:
26
- {question}
27
- """
28
- user_role_prompt = UserRolePrompt(user_prompt_template)
29
-
30
- class RetrievalAugmentedQAPipeline:
31
- def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
32
- self.llm = llm
33
- self.vector_db_retriever = vector_db_retriever
34
-
35
- async def arun_pipeline(self, user_query: str):
36
- context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
37
-
38
- context_prompt = ""
39
- for context in context_list:
40
- context_prompt += context[0] + "\n"
41
-
42
- formatted_system_prompt = system_role_prompt.create_message()
43
-
44
- formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
45
-
46
- async def generate_response():
47
- async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
48
- yield chunk
49
-
50
- return {"response": generate_response(), "context": context_list}
51
-
52
- text_splitter = RecursiveCharacterTextSplitter()
53
- # try:
54
- # api_key = os.environ["OPENAI_API_KEY"]
55
- # except KeyError:
56
- # print("Environment variable OPENAI_API_KEY not found")
57
- # text_splitter = SemanticChunker(OpenAIEmbeddings(api_key=api_key), breakpoint_threshold_type="standard_deviation")
58
-
59
- def process_text_file(file: AskFileResponse):
60
- import tempfile
61
- from langchain_community.document_loaders.pdf import PyPDFLoader
62
-
63
- with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=file.name) as temp_file:
64
- temp_file_path = temp_file.name
65
-
66
- with open(temp_file_path, "wb") as f:
67
- f.write(file.content)
68
-
69
- if file.type == 'text/plain':
70
- text_loader = TextFileLoader(temp_file_path)
71
- documents = text_loader.load_documents()
72
- elif file.type == 'application/pdf':
73
- pdf_loader = PyPDFLoader(temp_file_path)
74
- documents = pdf_loader.load()
75
- else:
76
- raise ValueError("Provide a .txt or .pdf file")
77
- texts = [x.page_content for x in text_splitter.transform_documents(documents)]
78
- # texts = [x.page_content for x in text_splitter.split_documents(documents)]
79
- return texts
80
-
81
-
82
-
83
- @cl.on_chat_start
84
- async def on_chat_start():
85
- files = None
86
-
87
- # Wait for the user to upload a file
88
- while files == None:
89
- files = await cl.AskFileMessage(
90
- content="Please upload a Text file or a PDF to begin!",
91
- accept=["text/plain", "application/pdf"],
92
- max_size_mb=12,
93
- timeout=180,
94
- ).send()
95
-
96
- file = files[0]
97
-
98
- msg = cl.Message(
99
- content=f"Processing `{file.name}`...", disable_human_feedback=True
100
- )
101
- await msg.send()
102
-
103
- # load the file
104
- texts = process_text_file(file)
105
-
106
- print(f"Processing {len(texts)} text chunks")
107
-
108
- # Create a dict vector store
109
- vector_db = VectorDatabase()
110
- vector_db = await vector_db.abuild_from_list(texts)
111
-
112
- chat_openai = ChatOpenAI()
113
-
114
- # Create a chain
115
- retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
116
- vector_db_retriever=vector_db,
117
- llm=chat_openai
118
- )
119
-
120
- # Let the user know that the system is ready
121
- msg.content = f"Processing `{file.name}` done. You can now ask questions!"
122
- await msg.update()
123
-
124
- cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
125
-
126
-
127
- @cl.on_message
128
- async def main(message):
129
- chain = cl.user_session.get("chain")
130
-
131
- msg = cl.Message(content="")
132
- result = await chain.arun_pipeline(message.content)
133
-
134
- async for stream_resp in result["response"]:
135
- await msg.stream_token(stream_resp)
136
-
137
  await msg.send()
 
1
+ import os
2
+ from typing import List
3
+ from chainlit.types import AskFileResponse
4
+ from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
5
+ from aimakerspace.openai_utils.prompts import (
6
+ UserRolePrompt,
7
+ SystemRolePrompt,
8
+ AssistantRolePrompt,
9
+ )
10
+ from aimakerspace.openai_utils.embedding import EmbeddingModel
11
+ from aimakerspace.vectordatabase import VectorDatabase
12
+ from aimakerspace.openai_utils.chatmodel import ChatOpenAI
13
+ import chainlit as cl
14
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
15
+ # from langchain_experimental.text_splitter import SemanticChunker
16
+ # from langchain_openai.embeddings import OpenAIEmbeddings
17
+
18
+ system_template = """\
19
+ Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
20
+ system_role_prompt = SystemRolePrompt(system_template)
21
+
22
+ user_prompt_template = """\
23
+ Context:
24
+ {context}
25
+ Question:
26
+ {question}
27
+ """
28
+ user_role_prompt = UserRolePrompt(user_prompt_template)
29
+
30
+ class RetrievalAugmentedQAPipeline:
31
+ def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
32
+ self.llm = llm
33
+ self.vector_db_retriever = vector_db_retriever
34
+
35
+ async def arun_pipeline(self, user_query: str):
36
+ context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
37
+
38
+ context_prompt = ""
39
+ for context in context_list:
40
+ context_prompt += context[0] + "\n"
41
+
42
+ formatted_system_prompt = system_role_prompt.create_message()
43
+
44
+ formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
45
+
46
+ async def generate_response():
47
+ async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
48
+ yield chunk
49
+
50
+ return {"response": generate_response(), "context": context_list}
51
+
52
+ text_splitter = RecursiveCharacterTextSplitter()
53
+
54
+
55
+ def process_text_file(file: AskFileResponse):
56
+ import tempfile
57
+ from langchain_community.document_loaders.pdf import PyPDFLoader
58
+
59
+ with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=file.name) as temp_file:
60
+ temp_file_path = temp_file.name
61
+
62
+ with open(temp_file_path, "wb") as f:
63
+ f.write(file.content)
64
+
65
+ if file.type == 'text/plain':
66
+ text_loader = TextFileLoader(temp_file_path)
67
+ documents = text_loader.load_documents()
68
+ elif file.type == 'application/pdf':
69
+ pdf_loader = PyPDFLoader(temp_file_path)
70
+ documents = pdf_loader.load()
71
+ else:
72
+ raise ValueError("Provide a .txt or .pdf file")
73
+ texts = [x.page_content for x in text_splitter.transform_documents(documents)]
74
+ # texts = [x.page_content for x in text_splitter.split_documents(documents)]
75
+ return texts
76
+
77
+
78
+
79
+ @cl.on_chat_start
80
+ async def on_chat_start():
81
+ files = None
82
+
83
+ # Wait for the user to upload a file
84
+ while files == None:
85
+ files = await cl.AskFileMessage(
86
+ content="Please upload a Text file or a PDF to begin!",
87
+ accept=["text/plain", "application/pdf"],
88
+ max_size_mb=12,
89
+ timeout=180,
90
+ max_files=10
91
+ ).send()
92
+
93
+ file = files[0]
94
+
95
+ msg = cl.Message(
96
+ content=f"Processing `{file.name}`...", disable_human_feedback=True
97
+ )
98
+ await msg.send()
99
+
100
+ # load the file
101
+ texts = process_text_file(file)
102
+
103
+ print(f"Processing {len(texts)} text chunks")
104
+
105
+ # Create a dict vector store
106
+ vector_db = VectorDatabase()
107
+ vector_db = await vector_db.abuild_from_list(texts)
108
+
109
+ chat_openai = ChatOpenAI()
110
+
111
+ # Create a chain
112
+ retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
113
+ vector_db_retriever=vector_db,
114
+ llm=chat_openai
115
+ )
116
+
117
+ # Let the user know that the system is ready
118
+ msg.content = f"Processing `{file.name}` done. You can now ask questions!"
119
+ await msg.update()
120
+
121
+ cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
122
+
123
+
124
+ @cl.on_message
125
+ async def main(message):
126
+ chain = cl.user_session.get("chain")
127
+
128
+ msg = cl.Message(content="")
129
+ result = await chain.arun_pipeline(message.content)
130
+
131
+ async for stream_resp in result["response"]:
132
+ await msg.stream_token(stream_resp)
133
+
 
 
 
134
  await msg.send()