Spaces:
Runtime error
Runtime error
File size: 13,935 Bytes
a8c2f1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"^C\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"grpcio-tools 1.66.1 requires protobuf<6.0dev,>=5.26.1, but you have protobuf 4.25.5 which is incompatible.\n",
"langchain-chroma 0.1.3 requires langchain-core<0.3,>=0.1.40, but you have langchain-core 0.3.5 which is incompatible.\n",
"langchain-huggingface 0.0.3 requires langchain-core<0.3,>=0.1.52, but you have langchain-core 0.3.5 which is incompatible.\n",
"ragas 0.1.20 requires langchain-core<0.3, but you have langchain-core 0.3.5 which is incompatible.\n"
]
}
],
"source": [
"%pip install -qU langchain-community tiktoken langchain-openai langchainhub langchain langgraph langchain-text-splitters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install qdrant-client"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import PyMuPDFLoader\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Qdrant\n",
"\n",
"pdfs = [\n",
" \"C:/Users/andre/OneDrive/Documents/AIE4/AIE4/Midterm/Blueprint-for-an-AI-Bill-of-Rights.pdf\",\n",
" \"C:/Users/andre/OneDrive/Documents/AIE4/AIE4/Midterm/NIST_report.pdf\",\n",
"]\n",
"\n",
"docs = [PyMuPDFLoader(pdf).load() for pdf in pdfs]\n",
"\n",
"docs_list = [item for sublist in docs for item in sublist]\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(\n",
" chunk_size=500, chunk_overlap=50\n",
")\n",
"\n",
"doc_splits = text_splitter.split_documents(docs_list)\n",
"\n",
"embeddings = OpenAIEmbeddings(model=\"text-embedding-3-small\")\n",
"\n",
"vectorstore = Qdrant.from_documents(\n",
" documents=doc_splits,\n",
" embedding=embeddings,\n",
" location=\":memory:\",\n",
" collection_name=\"rag-agentic\"\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"from langchain.tools.retriever import create_retriever_tool\n",
"\n",
"retriever_tool = create_retriever_tool(\n",
" retriever,\n",
" \"retrieve_blog_posts\",\n",
" \"Search and return information about the responsible and ethical use of AI along with the development of policies and practices to protect civil rights and promote democratic values in the building, deployment, and government of automated systems.\",\n",
")\n",
"\n",
"tools = [retriever_tool]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"from typing import Annotated, Sequence, TypedDict\n",
"\n",
"from langchain_core.messages import BaseMessage\n",
"\n",
"from langgraph.graph.message import add_messages\n",
"\n",
"\n",
"class AgentState(TypedDict):\n",
" # The add_messages function defines how an update should be processed\n",
" # Default is to replace. add_messages says \"append\"\n",
" messages: Annotated[Sequence[BaseMessage], add_messages]"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"from typing import Annotated, Literal, Sequence, TypedDict\n",
"\n",
"from langchain import hub\n",
"from langchain_core.messages import BaseMessage, HumanMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"# NOTE: you must use langchain-core >= 0.3 with Pydantic v2\n",
"from pydantic import BaseModel, Field\n",
"from langgraph.prebuilt import tools_condition\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"\n",
"### Edges\n",
"\n",
"\n",
"def grade_documents(state) -> Literal[\"generate\", \"rewrite\"]:\n",
" \"\"\"\n",
" Determines whether the retrieved documents are relevant to the question.\n",
"\n",
" Args:\n",
" state (messages): The current state\n",
"\n",
" Returns:\n",
" str: A decision for whether the documents are relevant or not\n",
" \"\"\"\n",
"\n",
" print(\"---CHECK RELEVANCE---\")\n",
"\n",
" # Data model\n",
" class grade(BaseModel):\n",
" \"\"\"Binary score for relevance check.\"\"\"\n",
"\n",
" binary_score: str = Field(description=\"Relevance score 'yes' or 'no'\")\n",
"\n",
" # LLM\n",
" model = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\", streaming=True)\n",
"\n",
" # LLM with tool and validation\n",
" llm_with_tool = model.with_structured_output(grade)\n",
"\n",
" # Prompt\n",
" prompt = PromptTemplate(\n",
" template=\"\"\"You are a grader assessing relevance of a retrieved document to a user question. \\n \n",
" Here is the retrieved document: \\n\\n {context} \\n\\n\n",
" Here is the user question: {question} \\n\n",
" If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \\n\n",
" Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.\"\"\",\n",
" input_variables=[\"context\", \"question\"],\n",
" )\n",
"\n",
" # Chain\n",
" chain = prompt | llm_with_tool\n",
"\n",
" messages = state[\"messages\"]\n",
" last_message = messages[-1]\n",
"\n",
" question = messages[0].content\n",
" docs = last_message.content\n",
"\n",
" scored_result = chain.invoke({\"question\": question, \"context\": docs})\n",
"\n",
" score = scored_result.binary_score\n",
"\n",
" if score == \"yes\":\n",
" print(\"---DECISION: DOCS RELEVANT---\")\n",
" return \"generate\"\n",
"\n",
" else:\n",
" print(\"---DECISION: DOCS NOT RELEVANT---\")\n",
" print(score)\n",
" return \"rewrite\"\n"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"LangChain API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
"### Nodes\n",
"\n",
"\n",
"def agent(state):\n",
" \"\"\"\n",
" Invokes the agent model to generate a response based on the current state. Given\n",
" the question, it will decide to retrieve using the retriever tool, or simply end.\n",
"\n",
" Args:\n",
" state (messages): The current state\n",
"\n",
" Returns:\n",
" dict: The updated state with the agent response appended to messages\n",
" \"\"\"\n",
" print(\"---CALL AGENT---\")\n",
" messages = state[\"messages\"]\n",
" model = ChatOpenAI(temperature=0, streaming=True, model=\"gpt-4o-mini\")\n",
" model = model.bind_tools(tools)\n",
" response = model.invoke(messages)\n",
" # We return a list, because this will get added to the existing list\n",
" return {\"messages\": [response]}\n",
"\n",
"\n",
"def rewrite(state):\n",
" \"\"\"\n",
" Transform the query to produce a better question.\n",
"\n",
" Args:\n",
" state (messages): The current state\n",
"\n",
" Returns:\n",
" dict: The updated state with re-phrased question\n",
" \"\"\"\n",
"\n",
" print(\"---TRANSFORM QUERY---\")\n",
" messages = state[\"messages\"]\n",
" question = messages[0].content\n",
"\n",
" msg = [\n",
" HumanMessage(\n",
" content=f\"\"\" \\n \n",
" Look at the input and try to reason about the underlying semantic intent / meaning. \\n \n",
" Here is the initial question:\n",
" \\n ------- \\n\n",
" {question} \n",
" \\n ------- \\n\n",
" Formulate an improved question: \"\"\",\n",
" )\n",
" ]\n",
"\n",
" # Grader\n",
" model = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\", streaming=True)\n",
" response = model.invoke(msg)\n",
" return {\"messages\": [response]}\n",
"\n",
"\n",
"def generate(state):\n",
" \"\"\"\n",
" Generate answer\n",
"\n",
" Args:\n",
" state (messages): The current state\n",
"\n",
" Returns:\n",
" dict: The updated state with re-phrased question\n",
" \"\"\"\n",
" print(\"---GENERATE---\")\n",
" messages = state[\"messages\"]\n",
" question = messages[0].content\n",
" last_message = messages[-1]\n",
"\n",
" docs = last_message.content\n",
"\n",
" # Prompt\n",
" prompt = hub.pull(\"rlm/rag-prompt\")\n",
"\n",
" # LLM\n",
" llm = ChatOpenAI(model_name=\"gpt-4o-mini\", temperature=0, streaming=True)\n",
"\n",
" # Post-processing\n",
" def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
"\n",
" # Chain\n",
" rag_chain = prompt | llm | StrOutputParser()\n",
"\n",
" # Run\n",
" response = rag_chain.invoke({\"context\": docs, \"question\": question})\n",
" return {\"messages\": [response]}"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"from langgraph.graph import END, StateGraph, START\n",
"from langgraph.prebuilt import ToolNode\n",
"\n",
"# Define a new graph\n",
"workflow = StateGraph(AgentState)\n",
"\n",
"# Define the nodes we will cycle between\n",
"workflow.add_node(\"agent\", agent) # agent\n",
"retrieve = ToolNode([retriever_tool])\n",
"workflow.add_node(\"retrieve\", retrieve) # retrieval\n",
"workflow.add_node(\"rewrite\", rewrite) # Re-writing the question\n",
"workflow.add_node(\n",
" \"generate\", generate\n",
") # Generating a response after we know the documents are relevant\n",
"# Call agent node to decide to retrieve or not\n",
"workflow.add_edge(START, \"agent\")\n",
"\n",
"# Decide whether to retrieve\n",
"workflow.add_conditional_edges(\n",
" \"agent\",\n",
" # Assess agent decision\n",
" tools_condition,\n",
" {\n",
" # Translate the condition outputs to nodes in our graph\n",
" \"tools\": \"retrieve\",\n",
" END: END,\n",
" },\n",
")\n",
"\n",
"# Edges taken after the `action` node is called.\n",
"workflow.add_conditional_edges(\n",
" \"retrieve\",\n",
" # Assess agent decision\n",
" grade_documents,\n",
")\n",
"workflow.add_edge(\"generate\", END)\n",
"workflow.add_edge(\"rewrite\", \"agent\")\n",
"\n",
"# Compile\n",
"graph = workflow.compile()"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---CALL AGENT---\n",
"\"Output from node 'agent':\"\n",
"'---'\n",
"('Some problems with AI include biases in algorithms that can lead to unfair '\n",
" 'treatment of individuals and the potential for job displacement as '\n",
" 'automation increases. Additionally, concerns about privacy, security, and '\n",
" 'the ethical implications of decision-making by AI systems pose significant '\n",
" 'challenges.')\n",
"'\\n---\\n'\n"
]
}
],
"source": [
"import pprint\n",
"\n",
"inputs = {\n",
" \"messages\": [\n",
" (\"user\", \"What are some problems with AI? Give me a response in two sentences or less\"),\n",
" ]\n",
"}\n",
"\n",
"\n",
"for output in graph.stream(inputs):\n",
" for key, value in output.items():\n",
" pprint.pprint(f\"Output from node '{key}':\")\n",
" pprint.pprint(\"---\")\n",
" pprint.pprint(value['messages'][0].content, indent=2, width=80, depth=None)\n",
" pprint.pprint(\"\\n---\\n\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llm-ops",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|