dockerfile
Browse files- Dockerfile +0 -2
- app.py +58 -26
Dockerfile
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
|
2 |
-
AIM version:
|
3 |
FROM python:3.9
|
4 |
RUN useradd -m -u 1000 user
|
5 |
USER user
|
|
|
|
|
|
|
1 |
FROM python:3.9
|
2 |
RUN useradd -m -u 1000 user
|
3 |
USER user
|
app.py
CHANGED
@@ -11,6 +11,9 @@ from langchain_core.prompts import PromptTemplate
|
|
11 |
from langchain.schema.output_parser import StrOutputParser
|
12 |
from langchain.schema.runnable import RunnablePassthrough
|
13 |
from langchain.schema.runnable.config import RunnableConfig
|
|
|
|
|
|
|
14 |
|
15 |
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
|
16 |
# ---- ENV VARIABLES ---- #
|
@@ -44,42 +47,73 @@ documents = text_loader.load()
|
|
44 |
|
45 |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
|
46 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
|
47 |
-
split_documents = text_splitter.split_documents(documents)
|
|
|
48 |
|
49 |
### 3. LOAD HUGGINGFACE EMBEDDINGS
|
50 |
-
hf_embeddings
|
51 |
-
model=HF_EMBED_ENDPOINT,
|
52 |
task="feature-extraction",
|
53 |
huggingfacehub_api_token=os.environ["HF_TOKEN"],
|
54 |
)
|
55 |
|
56 |
-
|
57 |
-
vectorstore
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
print("Indexing Files")
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
vectorstore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
hf_retriever =
|
76 |
|
77 |
# -- AUGMENTED -- #
|
78 |
"""
|
79 |
1. Define a String Template
|
80 |
2. Create a Prompt Template from the String Template
|
81 |
"""
|
82 |
-
### 1. DEFINE STRING TEMPLATE
|
83 |
RAG_PROMPT_TEMPLATE = """\
|
84 |
<|start_header_id|>system<|end_header_id|>
|
85 |
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
|
@@ -94,16 +128,14 @@ Context:
|
|
94 |
<|start_header_id|>assistant<|end_header_id|>
|
95 |
"""
|
96 |
|
97 |
-
### 2. CREATE PROMPT TEMPLATE
|
98 |
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
99 |
|
100 |
-
|
101 |
# -- GENERATION -- #
|
102 |
"""
|
103 |
1. Create a HuggingFaceEndpoint for the LLM
|
104 |
"""
|
105 |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
106 |
-
hf_llm
|
107 |
endpoint_url=f"{HF_LLM_ENDPOINT}",
|
108 |
max_new_tokens=512,
|
109 |
top_k=10,
|
@@ -111,7 +143,7 @@ hf_llm = HuggingFaceEndpoint(
|
|
111 |
typical_p=0.95,
|
112 |
temperature=0.01,
|
113 |
repetition_penalty=1.03,
|
114 |
-
huggingfacehub_api_token=HF_TOKEN
|
115 |
)
|
116 |
|
117 |
@cl.author_rename
|
|
|
11 |
from langchain.schema.output_parser import StrOutputParser
|
12 |
from langchain.schema.runnable import RunnablePassthrough
|
13 |
from langchain.schema.runnable.config import RunnableConfig
|
14 |
+
from tqdm.asyncio import tqdm_asyncio
|
15 |
+
import asyncio
|
16 |
+
from tqdm.asyncio import tqdm
|
17 |
|
18 |
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
|
19 |
# ---- ENV VARIABLES ---- #
|
|
|
47 |
|
48 |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
|
49 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
|
50 |
+
split_documents = split_documents = text_splitter.split_documents(documents)
|
51 |
+
print(len(split_documents))
|
52 |
|
53 |
### 3. LOAD HUGGINGFACE EMBEDDINGS
|
54 |
+
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
55 |
+
model=HF_EMBED_ENDPOINT,
|
56 |
task="feature-extraction",
|
57 |
huggingfacehub_api_token=os.environ["HF_TOKEN"],
|
58 |
)
|
59 |
|
60 |
+
async def add_documents_async(vectorstore, documents):
|
61 |
+
await vectorstore.aadd_documents(documents)
|
62 |
+
|
63 |
+
async def process_batch(vectorstore, batch, is_first_batch, pbar):
|
64 |
+
if is_first_batch:
|
65 |
+
result = await FAISS.afrom_documents(batch, hf_embeddings)
|
66 |
+
else:
|
67 |
+
await add_documents_async(vectorstore, batch)
|
68 |
+
result = vectorstore
|
69 |
+
pbar.update(len(batch))
|
70 |
+
return result
|
71 |
+
|
72 |
+
async def main():
|
73 |
print("Indexing Files")
|
74 |
+
|
75 |
+
vectorstore = None
|
76 |
+
batch_size = 32
|
77 |
+
|
78 |
+
batches = [split_documents[i:i+batch_size] for i in range(0, len(split_documents), batch_size)]
|
79 |
+
|
80 |
+
async def process_all_batches():
|
81 |
+
nonlocal vectorstore
|
82 |
+
tasks = []
|
83 |
+
pbars = []
|
84 |
+
|
85 |
+
for i, batch in enumerate(batches):
|
86 |
+
pbar = tqdm(total=len(batch), desc=f"Batch {i+1}/{len(batches)}", position=i)
|
87 |
+
pbars.append(pbar)
|
88 |
+
|
89 |
+
if i == 0:
|
90 |
+
vectorstore = await process_batch(None, batch, True, pbar)
|
91 |
+
else:
|
92 |
+
tasks.append(process_batch(vectorstore, batch, False, pbar))
|
93 |
+
|
94 |
+
if tasks:
|
95 |
+
await asyncio.gather(*tasks)
|
96 |
+
|
97 |
+
for pbar in pbars:
|
98 |
+
pbar.close()
|
99 |
+
|
100 |
+
await process_all_batches()
|
101 |
+
|
102 |
+
hf_retriever = vectorstore.as_retriever()
|
103 |
+
print("\nIndexing complete. Vectorstore is ready for use.")
|
104 |
+
return hf_retriever
|
105 |
+
|
106 |
+
async def run():
|
107 |
+
retriever = await main()
|
108 |
+
return retriever
|
109 |
|
110 |
+
hf_retriever = asyncio.run(run())
|
111 |
|
112 |
# -- AUGMENTED -- #
|
113 |
"""
|
114 |
1. Define a String Template
|
115 |
2. Create a Prompt Template from the String Template
|
116 |
"""
|
|
|
117 |
RAG_PROMPT_TEMPLATE = """\
|
118 |
<|start_header_id|>system<|end_header_id|>
|
119 |
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
|
|
|
128 |
<|start_header_id|>assistant<|end_header_id|>
|
129 |
"""
|
130 |
|
|
|
131 |
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
132 |
|
|
|
133 |
# -- GENERATION -- #
|
134 |
"""
|
135 |
1. Create a HuggingFaceEndpoint for the LLM
|
136 |
"""
|
137 |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
138 |
+
hf_llm = HuggingFaceEndpoint(
|
139 |
endpoint_url=f"{HF_LLM_ENDPOINT}",
|
140 |
max_new_tokens=512,
|
141 |
top_k=10,
|
|
|
143 |
typical_p=0.95,
|
144 |
temperature=0.01,
|
145 |
repetition_penalty=1.03,
|
146 |
+
huggingfacehub_api_token=os.environ["HF_TOKEN"]
|
147 |
)
|
148 |
|
149 |
@cl.author_rename
|