Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from haystack.document_stores import InMemoryDocumentStore
|
2 |
+
import pandas as pd
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
df=pd.read_parquet('df.parquet')
|
6 |
+
candidats=pd.read_parquet('candidats.parquet')
|
7 |
+
|
8 |
+
document_store = InMemoryDocumentStore(use_bm25=True)
|
9 |
+
docs=df.drop_duplicates(subset=['fileclean']).rename(columns={'fileclean':'content'}).to_dict(orient='records')
|
10 |
+
document_store.write_documents(docs)
|
11 |
+
from haystack.nodes import BM25Retriever
|
12 |
+
retriever = BM25Retriever(document_store=document_store)
|
13 |
+
from haystack.pipelines import DocumentSearchPipeline
|
14 |
+
pipeline = DocumentSearchPipeline(retriever=retriever)
|
15 |
+
|
16 |
+
def semanticsearch(query):
|
17 |
+
result = pipeline.run(
|
18 |
+
query=query,
|
19 |
+
params={
|
20 |
+
"Retriever": {
|
21 |
+
"top_k": 10
|
22 |
+
}
|
23 |
+
},debug=False
|
24 |
+
)
|
25 |
+
results=[]
|
26 |
+
for document in result['documents']:
|
27 |
+
result=document.to_dict()
|
28 |
+
for c in ['content_type','embedding','id']:
|
29 |
+
result.pop(c)
|
30 |
+
results.append(result)
|
31 |
+
results=pd.DataFrame(results)
|
32 |
+
return results
|
33 |
+
|
34 |
+
demo = gr.Interface(
|
35 |
+
semanticsearch,
|
36 |
+
[
|
37 |
+
gr.Dropdown([candidats.sort_values(by='text').text.tolist()]),
|
38 |
+
],
|
39 |
+
[gr.Dataframe()]
|
40 |
+
|
41 |
+
)
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
demo.launch()
|