Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,205 Bytes
76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
import torch
import torch.nn as nn
from transformers import CLIPTextModel
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionXLPipeline,
StableDiffusion3Pipeline,
#FluxPipeline,
DDIMScheduler,
PNDMScheduler,
DPMSolverSinglestepScheduler,
AutoencoderKL,
LCMScheduler,
)
from diffusers.loaders.single_file_utils import convert_ldm_unet_checkpoint
from adaface.util import UNetEnsemble
from adaface.face_id_to_ada_prompt import create_id2ada_prompt_encoder
from adaface.diffusers_attn_lora_capture import set_up_attn_processors, set_up_ffn_loras, set_lora_and_capture_flags
from safetensors.torch import load_file as safetensors_load_file
import re, os
import numpy as np
from peft.utils.constants import DUMMY_TARGET_MODULES
class AdaFaceWrapper(nn.Module):
def __init__(self, pipeline_name, base_model_path, adaface_encoder_types,
adaface_ckpt_paths, adaface_encoder_cfg_scales=None,
enabled_encoders=None, use_lcm=False, default_scheduler_name='ddim',
num_inference_steps=50, subject_string='z', negative_prompt=None,
use_840k_vae=False, use_ds_text_encoder=False,
main_unet_filepath=None, unet_types=None, extra_unet_dirpaths=None, unet_weights_in_ensemble=None,
enable_static_img_suffix_embs=None, unet_uses_attn_lora=False,
attn_lora_layer_names=['q', 'k', 'v', 'out'], shrink_cross_attn=False, q_lora_updates_query=False,
device='cuda', is_training=False):
'''
pipeline_name: "text2img", "text2imgxl", "img2img", "text2img3", "flux", or None.
If None, it's used only as a face encoder, and the unet and vae are
removed from the pipeline to release RAM.
'''
super().__init__()
self.pipeline_name = pipeline_name
self.base_model_path = base_model_path
self.adaface_encoder_types = adaface_encoder_types
self.adaface_ckpt_paths = adaface_ckpt_paths
self.adaface_encoder_cfg_scales = adaface_encoder_cfg_scales
self.enabled_encoders = enabled_encoders
# None, or a list of two bools for two encoders. If None, both are disabled.
self.enable_static_img_suffix_embs = enable_static_img_suffix_embs
self.unet_uses_attn_lora = unet_uses_attn_lora
self.attn_lora_layer_names = attn_lora_layer_names
self.q_lora_updates_query = q_lora_updates_query
self.use_lcm = use_lcm
self.subject_string = subject_string
self.shrink_cross_attn = shrink_cross_attn
self.default_scheduler_name = default_scheduler_name
self.num_inference_steps = num_inference_steps if not use_lcm else 4
self.use_840k_vae = use_840k_vae
self.use_ds_text_encoder = use_ds_text_encoder
self.main_unet_filepath = main_unet_filepath
self.unet_types = unet_types
self.extra_unet_dirpaths = extra_unet_dirpaths
self.unet_weights_in_ensemble = unet_weights_in_ensemble
self.device = device
self.is_training = is_training
if negative_prompt is None:
self.negative_prompt = \
"flaws in the eyes, flaws in the face, lowres, non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, " \
"mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, deformed eyeballs, cross-eyed, blurry, " \
"mutation, duplicate, out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, " \
"nude, naked, nsfw, topless, bare breasts"
else:
self.negative_prompt = negative_prompt
self.initialize_pipeline()
# During inference, we never use static image suffix embeddings.
# So num_id_vecs is the length of the returned adaface embeddings for each encoder.
self.encoders_num_id_vecs = np.array(self.id2ada_prompt_encoder.encoders_num_id_vecs)
self.encoders_num_static_img_suffix_embs = np.array(self.id2ada_prompt_encoder.encoders_num_static_img_suffix_embs)
if self.enable_static_img_suffix_embs is not None:
assert len(self.enable_static_img_suffix_embs) == len(self.encoders_num_id_vecs)
self.encoders_num_static_img_suffix_embs *= np.array(self.enable_static_img_suffix_embs)
self.encoders_num_id_vecs += self.encoders_num_static_img_suffix_embs
self.img_prompt_embs = None
self.extend_tokenizer_and_text_encoder()
def to(self, device):
self.device = device
self.id2ada_prompt_encoder.to(device)
self.pipeline.to(device)
print(f"Moved AdaFaceWrapper to {device}.")
return self
def initialize_pipeline(self):
self.id2ada_prompt_encoder = create_id2ada_prompt_encoder(self.adaface_encoder_types,
self.adaface_ckpt_paths,
self.adaface_encoder_cfg_scales,
self.enabled_encoders,
num_static_img_suffix_embs=4)
self.id2ada_prompt_encoder.to(self.device)
print(f"adaface_encoder_cfg_scales: {self.adaface_encoder_cfg_scales}")
if self.use_840k_vae:
# The 840000-step vae model is slightly better in face details than the original vae model.
# https://huggingface.co/stabilityai/sd-vae-ft-mse-original
vae = AutoencoderKL.from_single_file("models/diffusers/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.ckpt",
torch_dtype=torch.float16)
else:
vae = None
if self.use_ds_text_encoder:
# The dreamshaper v7 finetuned text encoder follows the prompt slightly better than the original text encoder.
# https://huggingface.co/Lykon/DreamShaper/tree/main/text_encoder
text_encoder = CLIPTextModel.from_pretrained("models/diffusers/ds_text_encoder",
torch_dtype=torch.float16)
else:
text_encoder = None
remove_unet = False
if self.pipeline_name == "img2img":
PipelineClass = StableDiffusionImg2ImgPipeline
elif self.pipeline_name == "text2img":
PipelineClass = StableDiffusionPipeline
elif self.pipeline_name == "text2imgxl":
PipelineClass = StableDiffusionXLPipeline
elif self.pipeline_name == "text2img3":
PipelineClass = StableDiffusion3Pipeline
#elif self.pipeline_name == "flux":
# PipelineClass = FluxPipeline
# pipeline_name is None means only use this instance to generate adaface embeddings, not to generate images.
elif self.pipeline_name is None:
PipelineClass = StableDiffusionPipeline
remove_unet = True
else:
raise ValueError(f"Unknown pipeline name: {self.pipeline_name}")
if self.base_model_path is None:
base_model_path_dict = {
'text2img': 'models/sd15-dste8-vae.safetensors',
'text2imgxl': 'stabilityai/stable-diffusion-xl-base-1.0',
'text2img3': 'stabilityai/stable-diffusion-3-medium-diffusers',
'flux': 'black-forest-labs/FLUX.1-schnell',
}
self.base_model_path = base_model_path_dict[self.pipeline_name]
if os.path.isfile(self.base_model_path):
pipeline = PipelineClass.from_single_file(
self.base_model_path,
torch_dtype=torch.float16
)
else:
pipeline = PipelineClass.from_pretrained(
self.base_model_path,
torch_dtype=torch.float16,
safety_checker=None
)
if self.use_lcm:
lcm_path_dict = {
'text2img': 'latent-consistency/lcm-lora-sdv1-5',
'text2imgxl': 'latent-consistency/lcm-lora-sdxl',
}
if self.pipeline_name not in lcm_path_dict:
raise ValueError(f"Pipeline {self.pipeline_name} does not support LCM.")
lcm_path = lcm_path_dict[self.pipeline_name]
pipeline.load_lora_weights(lcm_path)
pipeline.fuse_lora()
print(f"Loaded LCM weights from {lcm_path}.")
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
if self.main_unet_filepath is not None:
print(f"Replacing the UNet with the UNet from {self.main_unet_filepath}.")
ret = pipeline.unet.load_state_dict(self.load_unet_from_file(self.main_unet_filepath, device='cpu'))
if len(ret.missing_keys) > 0:
print(f"Missing keys: {ret.missing_keys}")
if len(ret.unexpected_keys) > 0:
print(f"Unexpected keys: {ret.unexpected_keys}")
if (self.unet_types is not None and len(self.unet_types) > 0) \
or (self.extra_unet_dirpaths is not None and len(self.extra_unet_dirpaths) > 0):
unet_ensemble = UNetEnsemble([pipeline.unet], self.unet_types, self.extra_unet_dirpaths, self.unet_weights_in_ensemble,
device=self.device, torch_dtype=torch.float16)
pipeline.unet = unet_ensemble
print(f"Loaded pipeline from {self.base_model_path}.")
if not remove_unet and (self.unet_uses_attn_lora or self.shrink_cross_attn):
unet2 = self.load_unet_lora_weights(pipeline.unet, use_attn_lora=self.unet_uses_attn_lora,
attn_lora_layer_names=self.attn_lora_layer_names,
shrink_cross_attn=self.shrink_cross_attn,
q_lora_updates_query=self.q_lora_updates_query)
pipeline.unet = unet2
if self.use_840k_vae:
pipeline.vae = vae
print("Replaced the VAE with the 840k-step VAE.")
if self.use_ds_text_encoder:
pipeline.text_encoder = text_encoder
print("Replaced the text encoder with the DreamShaper text encoder.")
if remove_unet:
# Remove unet and vae to release RAM. Only keep tokenizer and text_encoder.
pipeline.unet = None
pipeline.vae = None
print("Removed UNet and VAE from the pipeline.")
if self.pipeline_name not in ["text2imgxl", "text2img3", "flux"] and not self.use_lcm:
if self.default_scheduler_name == 'ddim':
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
timestep_spacing="leading",
rescale_betas_zero_snr=False,
)
elif self.default_scheduler_name == 'pndm':
noise_scheduler = PNDMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
steps_offset=1,
timestep_spacing="leading",
skip_prk_steps=True,
)
elif self.default_scheduler_name == 'dpm++':
noise_scheduler = DPMSolverSinglestepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
prediction_type="epsilon",
num_train_timesteps=1000,
trained_betas=None,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
use_karras_sigmas=True,
)
else:
breakpoint()
pipeline.scheduler = noise_scheduler
# Otherwise, if not use_lcm, pipeline.scheduler == FlowMatchEulerDiscreteScheduler
# if use_lcm, pipeline.scheduler == LCMScheduler
self.pipeline = pipeline.to(self.device)
def set_adaface_encoder_cfg_scales(self, adaface_encoder_cfg_scales):
self.adaface_encoder_cfg_scales = adaface_encoder_cfg_scales
self.id2ada_prompt_encoder.set_out_id_embs_cfg_scale(adaface_encoder_cfg_scales)
def load_unet_from_file(self, unet_path, device=None):
if os.path.isfile(unet_path):
if unet_path.endswith(".safetensors"):
unet_state_dict = safetensors_load_file(unet_path, device=device)
else:
unet_state_dict = torch.load(unet_path, map_location=device)
key0 = list(unet_state_dict.keys())[0]
if key0.startswith("model.diffusion_model"):
key_prefix = ""
is_ldm_unet = True
elif key0.startswith("diffusion_model"):
key_prefix = "model."
is_ldm_unet = True
else:
is_ldm_unet = False
if is_ldm_unet:
unet_state_dict2 = {}
for key, value in unet_state_dict.items():
key2 = key_prefix + key
unet_state_dict2[key2] = value
print(f"LDM UNet detected. Convert to diffusers")
ldm_unet_config = { 'layers_per_block': 2 }
unet_state_dict = convert_ldm_unet_checkpoint(unet_state_dict2, ldm_unet_config)
else:
raise ValueError(f"UNet path {unet_path} is not a file.")
return unet_state_dict
# Adapted from ConsistentIDPipeline:set_ip_adapter().
def load_unet_loras(self, unet, unet_lora_modules_state_dict,
use_attn_lora=True, use_ffn_lora=False,
attn_lora_layer_names=['q', 'k', 'v', 'out'],
shrink_cross_attn=False, cross_attn_shrink_factor=0.5,
q_lora_updates_query=False):
attn_capture_procs, attn_opt_modules = \
set_up_attn_processors(unet, use_attn_lora=True, attn_lora_layer_names=attn_lora_layer_names,
lora_rank=192, lora_scale_down=8,
cross_attn_shrink_factor=cross_attn_shrink_factor,
q_lora_updates_query=q_lora_updates_query)
# up_blocks.3.resnets.[1~2].conv1, conv2, conv_shortcut. [12] matches 1 or 2.
if use_ffn_lora:
target_modules_pat = 'up_blocks.3.resnets.[12].conv[a-z0-9_]+'
else:
# A special pattern, "dummy-target-modules" tells PEFT to add loras on NONE of the layers.
# We couldn't simply skip PEFT initialization (converting unet to a PEFT model),
# otherwise the attn lora layers will cause nan quickly during a fp16 training.
target_modules_pat = DUMMY_TARGET_MODULES
unet, ffn_lora_layers, ffn_opt_modules = \
set_up_ffn_loras(unet, target_modules_pat=target_modules_pat, lora_uses_dora=True)
# self.attn_capture_procs and ffn_lora_layers will be used in set_lora_and_capture_flags().
self.attn_capture_procs = list(attn_capture_procs.values())
self.ffn_lora_layers = list(ffn_lora_layers.values())
# Combine attn_opt_modules and ffn_opt_modules into unet_lora_modules.
# unet_lora_modules is for optimization and loading/saving.
unet_lora_modules = {}
# attn_opt_modules and ffn_opt_modules have different depths of keys.
# attn_opt_modules:
# up_blocks_3_attentions_1_transformer_blocks_0_attn2_processor_std_shrink_factor,
# up_blocks_3_attentions_1_transformer_blocks_0_attn2_processor_to_q_lora_lora_A, ...
# ffn_opt_modules:
# base_model_model_up_blocks_3_resnets_1_conv1_lora_A, ...
# with the prefix 'base_model_model_'. Because ffn_opt_modules are extracted from the peft-wrapped model,
# and attn_opt_modules are extracted from the original unet model.
# To be compatible with old param keys, we append 'base_model_model_' to the keys of attn_opt_modules.
unet_lora_modules.update({ f'base_model_model_{k}': v for k, v in attn_opt_modules.items() })
unet_lora_modules.update(ffn_opt_modules)
# ParameterDict can contain both Parameter and nn.Module.
# TODO: maybe in the future, we couldn't put nn.Module in nn.ParameterDict.
self.unet_lora_modules = torch.nn.ParameterDict(unet_lora_modules)
missing, unexpected = self.unet_lora_modules.load_state_dict(unet_lora_modules_state_dict, strict=False)
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
print(f"Loaded {len(unet_lora_modules_state_dict)} LoRA weights on the UNet:\n{unet_lora_modules.keys()}")
self.outfeat_capture_blocks.append(unet.up_blocks[3])
# If shrink_cross_attn is True and use_attn_lora is False, we load all these params from ckpt,
# but since we set use_attn_lora to False, attn loras won't be used during inference nonetheless.
set_lora_and_capture_flags(unet, None, self.attn_capture_procs, self.outfeat_capture_blocks,
use_attn_lora, use_ffn_lora, 'recon_loss', capture_ca_activations=False,
shrink_cross_attn=shrink_cross_attn)
return unet
def load_unet_lora_weights(self, unet, use_attn_lora=True, attn_lora_layer_names=['q', 'k', 'v', 'out'],
shrink_cross_attn=False, q_lora_updates_query=False):
unet_lora_weight_found = False
if isinstance(self.adaface_ckpt_paths, str):
adaface_ckpt_paths = [self.adaface_ckpt_paths]
else:
adaface_ckpt_paths = self.adaface_ckpt_paths
for adaface_ckpt_path in adaface_ckpt_paths:
ckpt_dict = torch.load(adaface_ckpt_path, map_location='cpu')
if 'unet_lora_modules' in ckpt_dict:
unet_lora_modules_state_dict = ckpt_dict['unet_lora_modules']
print(f"{len(unet_lora_modules_state_dict)} LoRA weights found in {adaface_ckpt_path}.")
unet_lora_weight_found = True
break
# Since unet lora weights are not found in the adaface ckpt, we give up on loading unet attn processors.
if not unet_lora_weight_found:
print(f"LoRA weights not found in {self.adaface_ckpt_paths}.")
return unet
self.outfeat_capture_blocks = []
if isinstance(unet, UNetEnsemble):
for i, unet_ in enumerate(unet.unets):
unet_ = self.load_unet_loras(unet_, unet_lora_modules_state_dict,
use_attn_lora=use_attn_lora,
attn_lora_layer_names=attn_lora_layer_names,
shrink_cross_attn=shrink_cross_attn,
q_lora_updates_query=q_lora_updates_query)
unet.unets[i] = unet_
print(f"Loaded LoRA processors on UNetEnsemble of {len(unet.unets)} UNets.")
else:
unet = self.load_unet_loras(unet, unet_lora_modules_state_dict,
use_attn_lora=use_attn_lora,
attn_lora_layer_names=attn_lora_layer_names,
shrink_cross_attn=shrink_cross_attn,
q_lora_updates_query=q_lora_updates_query)
return unet
def extend_tokenizer_and_text_encoder(self):
if np.sum(self.encoders_num_id_vecs) < 1:
raise ValueError(f"encoders_num_id_vecs has to be larger or equal to 1, but is {self.encoders_num_id_vecs}")
tokenizer = self.pipeline.tokenizer
# If adaface_encoder_types is ["arc2face", "consistentID"], then total_num_id_vecs = 20.
# We add z_0_0, z_0_1, z_0_2, ..., z_0_15, z_1_0, z_1_1, z_1_2, z_1_3 to the tokenizer.
self.all_placeholder_tokens = []
self.placeholder_tokens_strs = []
self.encoder_placeholder_tokens = []
for i in range(len(self.adaface_encoder_types)):
placeholder_tokens = []
for j in range(self.encoders_num_id_vecs[i]):
placeholder_tokens.append(f"{self.subject_string}_{i}_{j}")
placeholder_tokens_str = " ".join(placeholder_tokens)
self.all_placeholder_tokens.extend(placeholder_tokens)
self.encoder_placeholder_tokens.append(placeholder_tokens)
self.placeholder_tokens_strs.append(placeholder_tokens_str)
self.all_placeholder_tokens_str = " ".join(self.placeholder_tokens_strs)
self.updated_tokens_str = self.all_placeholder_tokens_str
# all_null_placeholder_tokens_str: ", , , , ..." (20 times).
# It just contains the commas and spaces with the same length, but no actual tokens.
self.all_null_placeholder_tokens_str = " ".join([", "] * len(self.all_placeholder_tokens))
# Add the new tokens to the tokenizer.
num_added_tokens = tokenizer.add_tokens(self.all_placeholder_tokens)
if num_added_tokens != np.sum(self.encoders_num_id_vecs):
raise ValueError(
f"The tokenizer already contains some of the tokens {self.all_placeholder_tokens_str}. Please pass a different"
" `subject_string` that is not already in the tokenizer.")
print(f"Added {num_added_tokens} tokens ({self.all_placeholder_tokens_str}) to the tokenizer.")
# placeholder_token_ids: [49408, ..., 49427].
self.placeholder_token_ids = tokenizer.convert_tokens_to_ids(self.all_placeholder_tokens)
#print("New tokens:", self.placeholder_token_ids)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
old_weight_shape = self.pipeline.text_encoder.get_input_embeddings().weight.shape
self.pipeline.text_encoder.resize_token_embeddings(len(tokenizer))
new_weight = self.pipeline.text_encoder.get_input_embeddings().weight
print(f"Resized text encoder token embeddings from {old_weight_shape} to {new_weight.shape} on {new_weight.device}.")
# Extend pipeline.text_encoder with the adaface subject emeddings.
# subj_embs: [16, 768].
def update_text_encoder_subj_embeddings(self, subj_embs, lens_subj_emb_segments):
# Initialise the newly added placeholder token with the embeddings of the initializer token
# token_embeds: [49412, 768]
token_embeds = self.pipeline.text_encoder.get_input_embeddings().weight.data
all_encoders_updated_tokens = []
all_encoders_updated_token_strs = []
idx = 0
with torch.no_grad():
# sum of lens_subj_emb_segments are probably shorter than self.placeholder_token_ids,
# when some static_img_suffix_embs are disabled.
for i, encoder_type in enumerate(self.adaface_encoder_types):
encoder_updated_tokens = []
if (self.enabled_encoders is not None) and (encoder_type not in self.enabled_encoders):
idx += lens_subj_emb_segments[i]
continue
for j in range(lens_subj_emb_segments[i]):
placeholder_token = f"{self.subject_string}_{i}_{j}"
token_id = self.pipeline.tokenizer.convert_tokens_to_ids(placeholder_token)
token_embeds[token_id] = subj_embs[idx]
encoder_updated_tokens.append(placeholder_token)
idx += 1
all_encoders_updated_tokens.extend(encoder_updated_tokens)
all_encoders_updated_token_strs.append(" ".join(encoder_updated_tokens))
self.updated_tokens_str = " ".join(all_encoders_updated_token_strs)
self.all_encoders_updated_token_strs = all_encoders_updated_token_strs
print(f"Updated {len(all_encoders_updated_tokens)} tokens ({self.updated_tokens_str}) in the text encoder.")
def update_prompt(self, prompt, placeholder_tokens_pos='append',
repeat_prompt_for_each_encoder=True,
use_null_placeholders=False):
if prompt is None:
prompt = ""
if use_null_placeholders:
all_placeholder_tokens_str = self.all_null_placeholder_tokens_str
if not re.search(r"\b(man|woman|person|child|girl|boy)\b", prompt.lower()):
all_placeholder_tokens_str = "person " + all_placeholder_tokens_str
repeat_prompt_for_each_encoder = False
else:
all_placeholder_tokens_str = self.updated_tokens_str
# Delete the subject_string from the prompt.
prompt = re.sub(r'\b(a|an|the)\s+' + self.subject_string + r'\b,?', "", prompt)
prompt = re.sub(r'\b' + self.subject_string + r'\b,?', "", prompt)
# Prevously, arc2face ada prompts work better if they are prepended to the prompt,
# and consistentID ada prompts work better if they are appended to the prompt.
# When we do joint training, seems both work better if they are appended to the prompt.
# Therefore we simply appended all placeholder_tokens_str's to the prompt.
# NOTE: Prepending them hurts compositional prompts.
if repeat_prompt_for_each_encoder:
encoder_prompts = []
for encoder_updated_token_strs in self.all_encoders_updated_token_strs:
if placeholder_tokens_pos == 'prepend':
encoder_prompt = encoder_updated_token_strs + " " + prompt
elif placeholder_tokens_pos == 'append':
encoder_prompt = prompt + " " + encoder_updated_token_strs
else:
breakpoint()
encoder_prompts.append(encoder_prompt)
prompt = ", ".join(encoder_prompts)
else:
if placeholder_tokens_pos == 'prepend':
prompt = all_placeholder_tokens_str + " " + prompt
elif placeholder_tokens_pos == 'append':
prompt = prompt + " " + all_placeholder_tokens_str
else:
breakpoint()
return prompt
# NOTE: all_adaface_subj_embs is the input to the CLIP text encoder.
# ** DO NOT use it as prompt_embeds in the forward() method.
# If face_id_embs is None, then it extracts face_id_embs from the images,
# then map them to ada prompt embeddings.
# avg_at_stage: 'id_emb', 'img_prompt_emb', or None.
# avg_at_stage == ada_prompt_emb usually produces the worst results.
# id_emb is slightly better than img_prompt_emb, but sometimes img_prompt_emb is better.
def prepare_adaface_embeddings(self, image_paths, face_id_embs=None,
avg_at_stage='id_emb', # id_emb, img_prompt_emb, ada_prompt_emb, or None.
perturb_at_stage=None, # id_emb, img_prompt_emb, or None.
perturb_std=0, update_text_encoder=True):
all_adaface_subj_embs, img_prompt_embs, lens_subj_emb_segments = \
self.id2ada_prompt_encoder.generate_adaface_embeddings(\
image_paths, face_id_embs=face_id_embs,
img_prompt_embs=None,
avg_at_stage=avg_at_stage,
perturb_at_stage=perturb_at_stage,
perturb_std=perturb_std,
enable_static_img_suffix_embs=self.enable_static_img_suffix_embs)
if all_adaface_subj_embs is None:
return None
self.img_prompt_embs = img_prompt_embs
if all_adaface_subj_embs.ndim == 4:
# [1, 1, 20, 768] -> [20, 768]
all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0).squeeze(0)
elif all_adaface_subj_embs.ndim == 3:
# [1, 20, 768] -> [20, 768]
all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0)
if update_text_encoder:
self.update_text_encoder_subj_embeddings(all_adaface_subj_embs, lens_subj_emb_segments)
return all_adaface_subj_embs
def diffusers_encode_prompts(self, prompt, plain_prompt, negative_prompt, device):
# pooled_prompt_embeds_, negative_pooled_prompt_embeds_ are used by text2img3 and flux.
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None
# Compatible with older versions of diffusers.
if not hasattr(self.pipeline, "encode_prompt"):
# prompt_embeds_, negative_prompt_embeds_: [77, 768] -> [1, 77, 768].
prompt_embeds_, negative_prompt_embeds_ = \
self.pipeline._encode_prompt(prompt, device=device, num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt)
prompt_embeds_ = prompt_embeds_.unsqueeze(0)
negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0)
else:
if self.pipeline_name in ["text2imgxl", "text2img3", "flux"]:
prompt_2 = plain_prompt
# CLIP Text Encoder prompt uses a maximum sequence length of 77.
# T5 Text Encoder prompt uses a maximum sequence length of 256.
# 333 = 256 + 77.
prompt_t5 = prompt + "".join([", "] * 256)
# prompt_embeds_, negative_prompt_embeds_: [1, 333, 4096]
# pooled_prompt_embeds_, negative_pooled_prompt_embeds_: [1, 2048]
if self.pipeline_name == "text2imgxl":
prompt_embeds_, negative_prompt_embeds_, \
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
self.pipeline.encode_prompt(prompt, prompt_2, device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt)
elif self.pipeline_name == "text2img3":
prompt_embeds_, negative_prompt_embeds_, \
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
self.pipeline.encode_prompt(prompt, prompt_2, prompt_t5, device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt)
elif self.pipeline_name == "flux":
# prompt_embeds_: [1, 512, 4096]
# pooled_prompt_embeds_: [1, 768]
prompt_embeds_, pooled_prompt_embeds_, text_ids = \
self.pipeline.encode_prompt(prompt, prompt_t5, device=device,
num_images_per_prompt=1)
negative_prompt_embeds_ = negative_pooled_prompt_embeds_ = None
else:
breakpoint()
else:
# "text2img" and "img2img" pipelines.
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768]
prompt_embeds_, negative_prompt_embeds_ = \
self.pipeline.encode_prompt(prompt, device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt)
return prompt_embeds_, negative_prompt_embeds_, \
pooled_prompt_embeds_, negative_pooled_prompt_embeds_
# alt_prompt_embed_type: 'ada-nonmix', 'img'
def mix_ada_embs_with_other_embs(self, prompt, prompt_embeds,
alt_prompt_embed_type, alt_prompt_emb_weights):
# Scan prompt and replace tokens in self.placeholder_token_ids
# with the corresponding image embeddings.
prompt_tokens = self.pipeline.tokenizer.tokenize(prompt)
prompt_embeds2 = prompt_embeds.clone()
if alt_prompt_embed_type == 'img':
if self.img_prompt_embs is None:
print("Unable to find img_prompt_embs. Either prepare_adaface_embeddings() hasn't been called, or faceless images were used.")
return prompt_embeds
# self.img_prompt_embs: [1, 20, 768]
repl_embeddings = self.img_prompt_embs
elif alt_prompt_embed_type == 'ada-nonmix':
repl_embeddings_, _, _, _ = self.encode_prompt(prompt, ablate_prompt_only_placeholders=True,
verbose=True)
# repl_embeddings_: [1, 77, 768] -> [1, 20, 768]
repl_embeddings = repl_embeddings_[:, 1:len(self.all_placeholder_tokens)+1]
else:
breakpoint()
repl_tokens = {}
for i in range(len(prompt_tokens)):
if prompt_tokens[i] in self.all_placeholder_tokens:
encoder_idx = next((i for i, sublist in enumerate(self.encoder_placeholder_tokens) \
if prompt_tokens[i] in sublist), 0)
alt_prompt_emb_weight = alt_prompt_emb_weights[encoder_idx]
prompt_embeds2[:, i] = prompt_embeds2[:, i] * (1 - alt_prompt_emb_weight) \
+ repl_embeddings[:, self.all_placeholder_tokens.index(prompt_tokens[i])] * alt_prompt_emb_weight
repl_tokens[prompt_tokens[i]] = 1
repl_token_count = len(repl_tokens)
if np.all(np.array(alt_prompt_emb_weights) == 1):
print(f"Replaced {repl_token_count} tokens with {alt_prompt_embed_type} embeddings.")
else:
print(f"Mixed {repl_token_count} tokens with {alt_prompt_embed_type} embeddings, weight {alt_prompt_emb_weights}.")
return prompt_embeds2
def encode_prompt(self, prompt, negative_prompt=None,
placeholder_tokens_pos='append',
ablate_prompt_only_placeholders=False,
ablate_prompt_no_placeholders=False,
ablate_prompt_embed_type='ada', # 'ada', 'ada-nonmix', 'img'
nonmix_prompt_emb_weight=0,
repeat_prompt_for_each_encoder=True,
device=None, verbose=False):
if negative_prompt is None:
negative_prompt = self.negative_prompt
if device is None:
device = self.device
plain_prompt = prompt
if ablate_prompt_only_placeholders:
prompt = self.updated_tokens_str
else:
prompt = self.update_prompt(prompt, placeholder_tokens_pos=placeholder_tokens_pos,
repeat_prompt_for_each_encoder=repeat_prompt_for_each_encoder,
use_null_placeholders=ablate_prompt_no_placeholders)
if verbose:
print(f"Subject prompt:\n{prompt}")
# For some unknown reason, the text_encoder is still on CPU after self.pipeline.to(self.device).
# So we manually move it to GPU here.
self.pipeline.text_encoder.to(device)
prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
self.diffusers_encode_prompts(prompt, plain_prompt, negative_prompt, device)
if ablate_prompt_embed_type != 'ada':
alt_prompt_embed_type = ablate_prompt_embed_type
alt_prompt_emb_weights = (1, 1)
elif nonmix_prompt_emb_weight > 0:
alt_prompt_embed_type = 'ada-nonmix'
alt_prompt_emb_weights = (nonmix_prompt_emb_weight, nonmix_prompt_emb_weight)
else:
alt_prompt_emb_weights = (0, 0)
if sum(alt_prompt_emb_weights) > 0:
prompt_embeds_ = self.mix_ada_embs_with_other_embs(prompt, prompt_embeds_,
alt_prompt_embed_type, alt_prompt_emb_weights)
return prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_
# ref_img_strength is used only in the img2img pipeline.
def forward(self, noise, prompt, prompt_embeds=None, negative_prompt=None,
placeholder_tokens_pos='append',
guidance_scale=6.0, out_image_count=4,
ref_img_strength=0.8, generator=None,
ablate_prompt_only_placeholders=False,
ablate_prompt_no_placeholders=False,
ablate_prompt_embed_type='ada', # 'ada', 'ada-nonmix', 'img'
nonmix_prompt_emb_weight=0,
repeat_prompt_for_each_encoder=True,
verbose=False):
noise = noise.to(device=self.device, dtype=torch.float16)
if self.use_lcm:
guidance_scale = 0
if negative_prompt is None:
negative_prompt = self.negative_prompt
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768]
if prompt_embeds is None:
prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, \
negative_pooled_prompt_embeds_ = \
self.encode_prompt(prompt, negative_prompt,
placeholder_tokens_pos=placeholder_tokens_pos,
ablate_prompt_only_placeholders=ablate_prompt_only_placeholders,
ablate_prompt_no_placeholders=ablate_prompt_no_placeholders,
ablate_prompt_embed_type=ablate_prompt_embed_type,
nonmix_prompt_emb_weight=nonmix_prompt_emb_weight,
repeat_prompt_for_each_encoder=repeat_prompt_for_each_encoder,
device=self.device,
verbose=verbose)
else:
if len(prompt_embeds) == 2:
prompt_embeds_, negative_prompt_embeds_ = prompt_embeds
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None
elif len(prompt_embeds) == 4:
prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, \
negative_pooled_prompt_embeds_ = prompt_embeds
else:
breakpoint()
# Repeat the prompt embeddings for all images in the batch.
prompt_embeds_ = prompt_embeds_.repeat(out_image_count, 1, 1)
if negative_prompt_embeds_ is not None:
negative_prompt_embeds_ = negative_prompt_embeds_.repeat(out_image_count, 1, 1)
if self.pipeline_name in ["text2imgxl", "text2img3"]:
pooled_prompt_embeds_ = pooled_prompt_embeds_.repeat(out_image_count, 1)
negative_pooled_prompt_embeds_ = negative_pooled_prompt_embeds_.repeat(out_image_count, 1)
# noise: [BS, 4, 64, 64]
# When the pipeline is text2img, strength is ignored.
images = self.pipeline(prompt_embeds=prompt_embeds_,
negative_prompt_embeds=negative_prompt_embeds_,
pooled_prompt_embeds=pooled_prompt_embeds_,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds_,
num_inference_steps=self.num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator).images
elif self.pipeline_name == "flux":
images = self.pipeline(prompt_embeds=prompt_embeds_,
pooled_prompt_embeds=pooled_prompt_embeds_,
num_inference_steps=4,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator).images
else:
# When the pipeline is text2img, noise: [BS, 4, 64, 64], and strength is ignored.
# When the pipeline is img2img, noise is an initiali image of [BS, 3, 512, 512],
# whose pixels are normalized to [0, 1].
images = self.pipeline(image=noise,
prompt_embeds=prompt_embeds_,
negative_prompt_embeds=negative_prompt_embeds_,
num_inference_steps=self.num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
strength=ref_img_strength,
generator=generator).images
# images: [BS, 3, 512, 512]
return images
|