Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,834 Bytes
8ee7393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Dict, Any
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from diffusers.utils import logging, is_torch_version, deprecate
from diffusers.utils.torch_utils import fourier_filter
# UNet is a diffusers PeftAdapterMixin instance.
from diffusers.loaders.peft import PeftAdapterMixin
from peft import LoraConfig, get_peft_model
import peft.tuners.lora as peft_lora
from peft.tuners.lora.dora import DoraLinearLayer
from einops import rearrange
import math, re
import numpy as np
from peft.tuners.tuners_utils import BaseTunerLayer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def dummy_func(*args, **kwargs):
pass
# Revised from RevGrad, by removing the grad negation.
class ScaleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, alpha_, debug=False):
ctx.save_for_backward(alpha_, debug)
output = input_
if debug:
print(f"input: {input_.abs().mean().item()}")
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
# saved_tensors returns a tuple of tensors.
alpha_, debug = ctx.saved_tensors
if ctx.needs_input_grad[0]:
grad_output2 = grad_output * alpha_
if debug:
print(f"grad_output2: {grad_output2.abs().mean().item()}")
else:
grad_output2 = None
return grad_output2, None, None
class GradientScaler(nn.Module):
def __init__(self, alpha=1., debug=False, *args, **kwargs):
"""
A gradient scaling layer.
This layer has no parameters, and simply scales the gradient in the backward pass.
"""
super().__init__(*args, **kwargs)
self._alpha = torch.tensor(alpha, requires_grad=False)
self._debug = torch.tensor(debug, requires_grad=False)
def forward(self, input_):
_debug = self._debug if hasattr(self, '_debug') else False
return ScaleGrad.apply(input_, self._alpha.to(input_.device), _debug)
def gen_gradient_scaler(alpha, debug=False):
if alpha == 1:
return nn.Identity()
if alpha > 0:
return GradientScaler(alpha, debug=debug)
else:
assert alpha == 0
# Don't use lambda function here, otherwise the object can't be pickled.
return torch.detach
def split_indices_by_instance(indices, as_dict=False):
indices_B, indices_N = indices
unique_indices_B = torch.unique(indices_B)
if not as_dict:
indices_by_instance = [ (indices_B[indices_B == uib], indices_N[indices_B == uib]) for uib in unique_indices_B ]
else:
indices_by_instance = { uib.item(): indices_N[indices_B == uib] for uib in unique_indices_B }
return indices_by_instance
# If do_sum, returned emb_attns is 3D. Otherwise 4D.
# indices are applied on the first 2 dims of attn_mat.
def sel_emb_attns_by_indices(attn_mat, indices, all_token_weights=None, do_sum=True, do_mean=False):
indices_by_instance = split_indices_by_instance(indices)
# emb_attns[0]: [1, 9, 8, 64]
# 8: 8 attention heads. Last dim 64: number of image tokens.
emb_attns = [ attn_mat[inst_indices].unsqueeze(0) for inst_indices in indices_by_instance ]
if all_token_weights is not None:
# all_token_weights: [4, 77].
# token_weights_by_instance[0]: [1, 9, 1, 1].
token_weights = [ all_token_weights[inst_indices].reshape(1, -1, 1, 1) for inst_indices in indices_by_instance ]
else:
token_weights = [ 1 ] * len(indices_by_instance)
# Apply token weights.
emb_attns = [ emb_attns[i] * token_weights[i] for i in range(len(indices_by_instance)) ]
# sum among K_subj_i subj embeddings -> [1, 8, 64]
if do_sum:
emb_attns = [ emb_attns[i].sum(dim=1) for i in range(len(indices_by_instance)) ]
elif do_mean:
emb_attns = [ emb_attns[i].mean(dim=1) for i in range(len(indices_by_instance)) ]
emb_attns = torch.cat(emb_attns, dim=0)
return emb_attns
# Slow implementation equivalent to F.scaled_dot_product_attention.
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
shrink_cross_attn=False, cross_attn_shrink_factor=0.5,
is_causal=False, scale=None, enable_gqa=False) -> torch.Tensor:
B, L, S = query.size(0), query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
# 1: head (to be broadcasted). L: query length. S: key length.
attn_bias = torch.zeros(B, 1, L, S, device=query.device, dtype=query.dtype)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(B, 1, L, S, device=query.device, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
if enable_gqa:
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
attn_weight = query @ key.transpose(-2, -1) * scale_factor
if shrink_cross_attn:
cross_attn_scale = cross_attn_shrink_factor
else:
cross_attn_scale = 1
# attn_bias: [1, 1, 4096, 77], the same size as a single-head attn_weight.
attn_weight += attn_bias
attn_score = attn_weight
attn_weight = torch.softmax(attn_weight, dim=-1)
# NOTE: After scaling, the "probabilities" of the subject embeddings will sum to < 1.
# But this is intended, as we want to scale down the impact of the subject embeddings
# in the computed attention output tensors.
attn_weight = attn_weight * cross_attn_scale
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
output = attn_weight @ value
return output, attn_score, attn_weight
# All layers share the same attention processor instance.
class AttnProcessor_LoRA_Capture(nn.Module):
r"""
Revised from AttnProcessor2_0
"""
# lora_proj_layers is a dict of lora_layer_name -> lora_proj_layer.
def __init__(self, capture_ca_activations: bool = False, enable_lora: bool = False,
lora_uses_dora=True, lora_proj_layers=None,
lora_rank: int = 192, lora_alpha: float = 16,
cross_attn_shrink_factor: float = 0.5,
q_lora_updates_query=False, attn_proc_idx=-1):
super().__init__()
self.global_enable_lora = enable_lora
self.attn_proc_idx = attn_proc_idx
# reset_attn_cache_and_flags() sets the local (call-specific) self.enable_lora flag.
# By default, shrink_cross_attn is False. Later in layers 22, 23, 24 it will be set to True.
self.reset_attn_cache_and_flags(capture_ca_activations, False, enable_lora)
self.lora_rank = lora_rank
self.lora_alpha = lora_alpha
self.lora_scale = self.lora_alpha / self.lora_rank
self.cross_attn_shrink_factor = cross_attn_shrink_factor
self.q_lora_updates_query = q_lora_updates_query
self.to_q_lora = self.to_k_lora = self.to_v_lora = self.to_out_lora = None
if self.global_enable_lora:
for lora_layer_name, lora_proj_layer in lora_proj_layers.items():
if lora_layer_name == 'q':
self.to_q_lora = peft_lora.Linear(lora_proj_layer, 'default', r=lora_rank, lora_alpha=lora_alpha,
use_dora=lora_uses_dora, lora_dropout=0.1)
elif lora_layer_name == 'k':
self.to_k_lora = peft_lora.Linear(lora_proj_layer, 'default', r=lora_rank, lora_alpha=lora_alpha,
use_dora=lora_uses_dora, lora_dropout=0.1)
elif lora_layer_name == 'v':
self.to_v_lora = peft_lora.Linear(lora_proj_layer, 'default', r=lora_rank, lora_alpha=lora_alpha,
use_dora=lora_uses_dora, lora_dropout=0.1)
elif lora_layer_name == 'out':
self.to_out_lora = peft_lora.Linear(lora_proj_layer, 'default', r=lora_rank, lora_alpha=lora_alpha,
use_dora=lora_uses_dora, lora_dropout=0.1)
# LoRA layers can be enabled/disabled dynamically.
def reset_attn_cache_and_flags(self, capture_ca_activations, shrink_cross_attn, enable_lora):
self.capture_ca_activations = capture_ca_activations
self.shrink_cross_attn = shrink_cross_attn
self.cached_activations = {}
# Only enable LoRA for the next call(s) if global_enable_lora is set to True.
self.enable_lora = enable_lora and self.global_enable_lora
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
img_mask: Optional[torch.Tensor] = None,
subj_indices: Optional[Tuple[torch.IntTensor, torch.IntTensor]] = None,
debug: bool = False,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
# hidden_states: [1, 4096, 320]
residual = hidden_states
# attn.spatial_norm is None.
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
# Collapse the spatial dimensions to a single token dimension.
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
# NOTE: there's a inconsistency between q lora and k, v loras.
# k, v loras are directly applied to key and value (currently k, v loras are never enabled),
# while q lora is applied to query2, and we keep the query unchanged.
if self.enable_lora and self.to_q_lora is not None:
# query2 will be used in ldm/util.py:calc_elastic_matching_loss() to get more accurate
# cross attention scores between the latent images of the sc and mc instances.
query2 = self.to_q_lora(hidden_states)
# If not q_lora_updates_query, only query2 will be impacted by the LoRA layer.
# The query, and thus the attention score and attn_out, will be the same
# as the original ones.
if self.q_lora_updates_query:
query = query2
else:
query2 = query
scale = 1 / math.sqrt(query.size(-1))
is_cross_attn = (encoder_hidden_states is not None)
if (not is_cross_attn) and (img_mask is not None):
# NOTE: we assume the image is square. But this will fail if the image is not square.
# hidden_states: [BS, 4096, 320]. img_mask: [BS, 1, 64, 64]
# Scale the mask to the same size as hidden_states.
mask_size = int(math.sqrt(hidden_states.shape[-2]))
img_mask = F.interpolate(img_mask, size=(mask_size, mask_size), mode='nearest')
if (img_mask.sum(dim=(2, 3)) == 0).any():
img_mask = None
else:
# img_mask: [2, 1, 64, 64] -> [2, 4096]
img_mask = rearrange(img_mask, 'b ... -> b (...)').contiguous()
# max_neg_value = -torch.finfo(hidden_states.dtype).max
# img_mask: [2, 4096] -> [2, 1, 1, 4096]
img_mask = rearrange(img_mask.bool(), 'b j -> b () () j')
# attn_score: [16, 4096, 4096]. img_mask will be broadcasted to [16, 4096, 4096].
# So some rows in dim 1 (e.g. [0, :, 4095]) of attn_score will be masked out (all elements in [0, :, 4095] is -inf).
# But not all elements in [0, 4095, :] is -inf. Since the softmax is done along dim 2, this is fine.
# attn_score.masked_fill_(~img_mask, max_neg_value)
# NOTE: If there's an attention mask, it will be replaced by img_mask.
attention_mask = img_mask
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if self.enable_lora and self.to_k_lora is not None:
key = self.to_k_lora(encoder_hidden_states)
else:
key = attn.to_k(encoder_hidden_states)
if self.enable_lora and self.to_v_lora is not None:
value = self.to_v_lora(encoder_hidden_states)
else:
value = attn.to_v(encoder_hidden_states)
if attn.norm_q is not None:
query = attn.norm_q(query)
query2 = attn.norm_q(query2)
if attn.norm_k is not None:
key = attn.norm_k(key)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
query2 = query2.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if debug and self.attn_proc_idx >= 0:
breakpoint()
# the output of sdp = (batch, num_heads, seq_len, head_dim)
if is_cross_attn and (self.capture_ca_activations or self.shrink_cross_attn):
hidden_states, attn_score, attn_prob = \
scaled_dot_product_attention(query, key, value, attn_mask=attention_mask,
dropout_p=0.0, shrink_cross_attn=self.shrink_cross_attn,
cross_attn_shrink_factor=self.cross_attn_shrink_factor)
else:
# Use the faster implementation of scaled_dot_product_attention
# when not capturing the activations or suppressing the subject attention.
hidden_states = \
F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)
attn_prob = attn_score = None
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
if self.enable_lora and self.to_out_lora is not None:
hidden_states = self.to_out_lora(hidden_states)
else:
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
if is_cross_attn and self.capture_ca_activations:
# cached q will be used in ddpm.py:calc_comp_fg_bg_preserve_loss(), in which two qs will multiply each other.
# So sqrt(scale) will scale the product of two qs by scale.
# ANCHOR[id=attention_caching]
# query: [2, 8, 4096, 40] -> [2, 320, 4096]
self.cached_activations['q'] = \
rearrange(query, 'b h n d -> b (h d) n').contiguous() * math.sqrt(scale)
self.cached_activations['q2'] = \
rearrange(query2, 'b h n d -> b (h d) n').contiguous() * math.sqrt(scale)
self.cached_activations['k'] = \
rearrange(key, 'b h n d -> b (h d) n').contiguous() * math.sqrt(scale)
self.cached_activations['v'] = \
rearrange(value, 'b h n d -> b (h d) n').contiguous() * math.sqrt(scale)
# attn_prob, attn_score: [2, 8, 4096, 77]
self.cached_activations['attn'] = attn_prob
self.cached_activations['attnscore'] = attn_score
# attn_out: [b, n, h * d] -> [b, h * d, n]
# [2, 4096, 320] -> [2, 320, 4096].
self.cached_activations['attn_out'] = hidden_states.permute(0, 2, 1).contiguous()
return hidden_states
def CrossAttnUpBlock2D_forward_capture(
self,
hidden_states: torch.Tensor,
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
self.cached_outfeats = {}
res_hidden_states_gradscale = getattr(self, "res_hidden_states_gradscale", 1)
capture_outfeats = getattr(self, "capture_outfeats", False)
layer_idx = 0
res_grad_scaler = gen_gradient_scaler(res_hidden_states_gradscale)
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# Scale down the magnitudes of gradients to res_hidden_states
# by res_hidden_states_gradscale=0.2, to match the scale of the cross-attn layer outputs.
res_hidden_states = res_grad_scaler(res_hidden_states)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
else:
# resnet: ResnetBlock2D instance.
#LINK diffusers.models.resnet.ResnetBlock2D
# up_blocks.3.resnets.2.conv_shortcut is a module within ResnetBlock2D,
# it's not transforming the UNet shortcut features.
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if capture_outfeats:
self.cached_outfeats[layer_idx] = hidden_states
layer_idx += 1
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
# Adapted from ConsistentIDPipeline:set_ip_adapter().
# attn_lora_layer_names: candidates are subsets of ['q', 'k', 'v', 'out'].
def set_up_attn_processors(unet, use_attn_lora, attn_lora_layer_names=['q', 'k', 'v', 'out'],
lora_rank=192, lora_scale_down=8, cross_attn_shrink_factor=0.5,
q_lora_updates_query=False):
attn_procs = {}
attn_capture_procs = {}
unet_modules = dict(unet.named_modules())
attn_opt_modules = {}
attn_proc_idx = 0
for name, attn_proc in unet.attn_processors.items():
# Only capture the activations of the last 3 CA layers.
if not name.startswith("up_blocks.3"):
# Not the last 3 CA layers. Don't enable LoRA or capture activations.
# Then the layer falls back to the original attention mechanism.
# We still use AttnProcessor_LoRA_Capture, as it can handle img_mask.
attn_procs[name] = AttnProcessor_LoRA_Capture(
capture_ca_activations=False, enable_lora=False, attn_proc_idx=-1)
continue
# cross_attention_dim: 768.
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if cross_attention_dim is None:
# Self attention. Don't enable LoRA or capture activations.
# We replace the default attn_proc with AttnProcessor_LoRA_Capture,
# so that it can incorporate img_mask into self-attention.
attn_procs[name] = AttnProcessor_LoRA_Capture(
capture_ca_activations=False, enable_lora=False, attn_proc_idx=-1)
continue
# block_id = 3
# hidden_size: 320
# hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor' ->
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_q'
lora_layer_dict = {}
lora_layer_dict['q'] = unet_modules[name[:-9] + "to_q"]
lora_layer_dict['k'] = unet_modules[name[:-9] + "to_k"]
lora_layer_dict['v'] = unet_modules[name[:-9] + "to_v"]
# to_out is a ModuleList(Linear, Dropout).
lora_layer_dict['out'] = unet_modules[name[:-9] + "to_out"][0]
lora_proj_layers = {}
# Only apply LoRA to the specified layers.
for lora_layer_name in attn_lora_layer_names:
lora_proj_layers[lora_layer_name] = lora_layer_dict[lora_layer_name]
attn_capture_proc = AttnProcessor_LoRA_Capture(
capture_ca_activations=True, enable_lora=use_attn_lora,
lora_uses_dora=True, lora_proj_layers=lora_proj_layers,
# LoRA up is initialized to 0. So no need to worry that the LoRA output may be too large.
lora_rank=lora_rank, lora_alpha=lora_rank // lora_scale_down,
cross_attn_shrink_factor=cross_attn_shrink_factor,
q_lora_updates_query=q_lora_updates_query, attn_proc_idx=attn_proc_idx)
attn_proc_idx += 1
# attn_procs has to use the original names.
attn_procs[name] = attn_capture_proc
# ModuleDict doesn't allow "." in the key.
name = name.replace(".", "_")
attn_capture_procs[name] = attn_capture_proc
if use_attn_lora:
for subname, module in attn_capture_proc.named_modules():
if isinstance(module, peft_lora.LoraLayer):
# ModuleDict doesn't allow "." in the key.
lora_path = name + "_" + subname.replace(".", "_")
attn_opt_modules[lora_path + "_lora_A"] = module.lora_A
attn_opt_modules[lora_path + "_lora_B"] = module.lora_B
# lora_uses_dora is always True, so we don't check it here.
attn_opt_modules[lora_path + "_lora_magnitude_vector"] = module.lora_magnitude_vector
# We will manage attn adapters directly. By default, LoraLayer is an instance of BaseTunerLayer,
# so according to the code logic in diffusers/loaders/peft.py,
# they will be managed by the diffusers PeftAdapterMixin instance, through the
# enable_adapters(), and set_adapter() methods.
# Therefore, we disable these calls on module.
# disable_adapters() is a property and changing it will cause exceptions.
module.enable_adapters = dummy_func
module.set_adapter = dummy_func
unet.set_attn_processor(attn_procs)
print(f"Set up {len(attn_capture_procs)} CrossAttn processors on {attn_capture_procs.keys()}.")
print(f"Set up {len(attn_opt_modules)} attn LoRA params: {attn_opt_modules.keys()}.")
return attn_capture_procs, attn_opt_modules
# NOTE: cross-attn layers are included in the returned lora_modules.
def set_up_ffn_loras(unet, target_modules_pat, lora_uses_dora=False, lora_rank=192, lora_alpha=16):
# target_modules_pat = 'up_blocks.3.resnets.[12].conv[a-z0-9_]+'
# up_blocks.3.resnets.[1~2].conv1, conv2, conv_shortcut
# Cannot set to conv.+ as it will match added adapter module names, including
# up_blocks.3.resnets.1.conv1.base_layer, up_blocks.3.resnets.1.conv1.lora_dropout
if target_modules_pat is not None:
peft_config = LoraConfig(use_dora=lora_uses_dora, inference_mode=False, r=lora_rank,
lora_alpha=lora_alpha, lora_dropout=0.1,
target_modules=target_modules_pat)
# UNet is a diffusers PeftAdapterMixin instance. Using get_peft_model on it will
# cause weird errors. Instead, we directly use diffusers peft adapter methods.
unet.add_adapter(peft_config, "recon_loss")
unet.add_adapter(peft_config, "unet_distill")
unet.add_adapter(peft_config, "comp_distill")
unet.enable_adapters()
# lora_layers contain both the LoRA A and B matrices, as well as the original layers.
# lora_layers are used to set the flag, not used for optimization.
# lora_modules contain only the LoRA A and B matrices, so they are used for optimization.
# NOTE: lora_modules contain both ffn and cross-attn lora modules.
ffn_lora_layers = {}
ffn_opt_modules = {}
for name, module in unet.named_modules():
if isinstance(module, peft_lora.LoraLayer):
# We don't want to include cross-attn layers in ffn_lora_layers.
if target_modules_pat is not None and re.search(target_modules_pat, name):
ffn_lora_layers[name] = module
# ModuleDict doesn't allow "." in the key.
name = name.replace(".", "_")
# Since ModuleDict doesn't allow "." in the key, we manually collect
# the LoRA matrices in each module.
# NOTE: We cannot put every sub-module of module into lora_modules,
# as base_layer is also a sub-module of module, which we shouldn't optimize.
# Each value in ffn_opt_modules is a ModuleDict:
'''
(Pdb) ffn_opt_modules['up_blocks_3_resnets_1_conv1_lora_A']
ModuleDict(
(unet_distill): Conv2d(640, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(recon_loss): Conv2d(640, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
'''
ffn_opt_modules[name + "_lora_A"] = module.lora_A
ffn_opt_modules[name + "_lora_B"] = module.lora_B
if lora_uses_dora:
ffn_opt_modules[name + "_lora_magnitude_vector"] = module.lora_magnitude_vector
print(f"Set up {len(ffn_lora_layers)} FFN LoRA layers: {ffn_lora_layers.keys()}.")
print(f"Set up {len(ffn_opt_modules)} FFN LoRA params: {ffn_opt_modules.keys()}.")
return ffn_lora_layers, ffn_opt_modules
def set_lora_and_capture_flags(unet, unet_lora_modules, attn_capture_procs,
outfeat_capture_blocks, res_hidden_states_gradscale_blocks,
use_attn_lora, use_ffn_lora, ffn_lora_adapter_name, capture_ca_activations,
shrink_cross_attn, res_hidden_states_gradscale):
# For attn capture procs, capture_ca_activations and use_attn_lora are set in reset_attn_cache_and_flags().
for attn_capture_proc in attn_capture_procs:
attn_capture_proc.reset_attn_cache_and_flags(capture_ca_activations, shrink_cross_attn, enable_lora=use_attn_lora)
# outfeat_capture_blocks only contains the last up block, up_blocks[3].
# It contains 3 FFN layers. We want to capture their output features.
for block in outfeat_capture_blocks:
block.capture_outfeats = capture_ca_activations
for block in res_hidden_states_gradscale_blocks:
block.res_hidden_states_gradscale = res_hidden_states_gradscale
if not use_ffn_lora:
unet.disable_adapters()
else:
# ffn_lora_adapter_name: 'recon_loss', 'unet_distill', 'comp_distill'.
if ffn_lora_adapter_name is not None:
unet.set_adapter(ffn_lora_adapter_name)
# NOTE: Don't forget to enable_adapters().
# The adapters are not enabled by default after set_adapter().
unet.enable_adapters()
else:
breakpoint()
# During training, disable_adapters() and set_adapter() will set all/inactive adapters with requires_grad=False,
# which might cause issues during DDP training.
# So we restore them to requires_grad=True.
# During test, unet_lora_modules will be passed as None, so this block will be skipped.
if unet_lora_modules is not None:
for param in unet_lora_modules.parameters():
param.requires_grad = True
def get_captured_activations(capture_ca_activations, attn_capture_procs, outfeat_capture_blocks,
captured_layer_indices=[22, 23, 24], out_dtype=torch.float32):
captured_activations = { k: {} for k in ('outfeat', 'attn', 'attnscore',
'q', 'q2', 'k', 'v', 'attn_out') }
if not capture_ca_activations:
return captured_activations
all_cached_outfeats = []
for block in outfeat_capture_blocks:
all_cached_outfeats.append(block.cached_outfeats)
# Clear the capture flag and cached outfeats.
block.cached_outfeats = {}
block.capture_outfeats = False
for layer_idx in captured_layer_indices:
# Subtract 22 to ca_layer_idx to match the layer index in up_blocks[3].cached_outfeats.
# 23, 24 -> 1, 2 (!! not 0, 1 !!)
internal_idx = layer_idx - 22
for k in captured_activations.keys():
if k == 'outfeat':
# Currently we only capture one block, up_blocks.3. So we hard-code the index 0.
captured_activations['outfeat'][layer_idx] = all_cached_outfeats[0][internal_idx].to(out_dtype)
else:
# internal_idx is the index of layers in up_blocks.3.
# Layers 22, 23 and 24 map to 0, 1 and 2.
cached_activations = attn_capture_procs[internal_idx].cached_activations
captured_activations[k][layer_idx] = cached_activations[k].to(out_dtype)
return captured_activations
|