Spaces:
Running
on
Zero
Running
on
Zero
File size: 48,421 Bytes
76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 8ee7393 76ccb95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 |
# Borrowed from ip-adapter resampler.py.
# https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/resampler.py
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
import math
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
from transformers import CLIPTokenizer, CLIPTextModel
from torch import einsum
from adaface.util import gen_gradient_scaler
from adaface.arc2face_models import CLIPTextModelWrapper
def reshape_tensor(x, num_heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, num_heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2).contiguous()
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, num_heads, length, -1)
return x
# FFN. Added a Dropout layer at the end, so that it can still load the old ckpt.
def FeedForward(dim, mult=4, p_dropout=0.1):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
nn.Dropout(p_dropout),
)
# IP-Adapter FaceID class. Only used in knn-faces.py.
# From: https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/ip_adapter_faceid_separate.py
class IP_MLPProjModel(nn.Module):
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.num_tokens = num_tokens
self.proj = nn.Sequential(
nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
nn.GELU(),
nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, id_embeds):
x = self.proj(id_embeds)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.norm(x)
return x
class LayerwiseMLPProjWithSkip(nn.Module):
def __init__(self, id_embeddings_dim=768, num_layers=16, dim_mult=2):
super().__init__()
self.proj = nn.Sequential(
nn.Linear(id_embeddings_dim, id_embeddings_dim*dim_mult*num_layers),
Rearrange('b n (l d) -> b n l d', l=num_layers, d=id_embeddings_dim*dim_mult),
nn.GELU(),
nn.Linear(id_embeddings_dim*dim_mult, id_embeddings_dim),
)
self.norm = nn.LayerNorm(id_embeddings_dim)
def forward(self, id_embeds):
# B N D -> B N L D + B N L D -> B N L D
x = self.proj(id_embeds) + id_embeds.unsqueeze(1)
x = self.norm(x)
return x
# group_dim: the tensor dimension that corresponds to the multiple groups.
class LearnedSoftAggregate(nn.Module):
def __init__(self, num_feat, group_dim, keepdim=False):
super(LearnedSoftAggregate, self).__init__()
self.group_dim = group_dim
# num_feat = 1: element-wise score function & softmax.
# num_feat > 1: the linear score function is applied to the last dim (features) of the input tensor.
self.num_feat = num_feat
self.feat2score = nn.Linear(num_feat, 1, bias=False)
self.keepdim = keepdim
def forward(self, x, score_basis=None):
# If there's only one mode, do nothing.
if x.shape[self.group_dim] == 1:
if self.keepdim:
return x
else:
return x.squeeze(self.group_dim)
# Assume the last dim of x is the feature dim.
if score_basis is None:
score_basis = x
if self.num_feat == 1:
mode_scores = self.feat2score(score_basis.unsqueeze(-1)).squeeze(-1)
else:
mode_scores = self.feat2score(score_basis)
attn_probs = mode_scores.softmax(dim=self.group_dim)
x_aggr = (x * attn_probs).sum(dim=self.group_dim, keepdim=self.keepdim)
return x_aggr
def LoRA_ExpandEmbs(input_dim, lora_rank, output_dim, num_modes,
num_output_vecs, elementwise_affine=True, p_dropout=0.1):
return nn.Sequential(
# Project to [BS, lora_rank * output_dim * num_modes].
# It takes a huge param size. 512 * 32 * 768 * 4 = 6,291,456.
nn.Linear(input_dim, lora_rank * output_dim * num_modes, bias=False),
# Reshape to [BS, lora_rank, output_dim].
Rearrange('b (m q d) -> b m q d', q=lora_rank, m=num_modes, d=output_dim),
nn.LayerNorm(output_dim, elementwise_affine=elementwise_affine),
# Aggregate [BS, num_modes, loar_rank, output_dim] -> [BS, lora_rank, output_dim].
LearnedSoftAggregate(num_feat=output_dim, group_dim=1, keepdim=False) if num_modes > 1 \
else Rearrange('b () q d -> b q d'),
nn.Dropout(p_dropout),
# Permute to [BS, output_dim, lora_rank].
Rearrange('b q d -> b d q'),
# Project to [BS, output_dim, num_output_vecs].
nn.Linear(lora_rank, num_output_vecs, bias=False),
# Permute to [BS, num_output_vecs, output_dim].
Rearrange('b d q -> b q d'),
nn.LayerNorm(output_dim, elementwise_affine=elementwise_affine),
nn.Dropout(p_dropout),
)
def ExpandEmbs(input_dim, output_dim, expansion_ratio, elementwise_affine=True, p_dropout=0.1):
return nn.Sequential(
# Project to [BS, num_output_vecs * output_dim].
nn.Linear(input_dim, expansion_ratio * output_dim, bias=False),
# Reshape to [BS, num_output_vecs, output_dim].
Rearrange('b (e d) -> b e d', e=expansion_ratio, d=output_dim),
nn.LayerNorm(output_dim, elementwise_affine=elementwise_affine),
nn.Dropout(p_dropout),
)
# Input: [BS, N, D].
def MultimodeProjection(input_dim, output_dim=-1, num_modes=4, elementwise_affine=True, p_dropout=0.1):
if output_dim == -1:
output_dim = input_dim
return nn.Sequential(
nn.Linear(input_dim, output_dim * num_modes, bias=False),
# Reshape to [BS, num_output_vecs, output_dim].
Rearrange('b n (m d) -> b n m d', m=num_modes, d=output_dim),
nn.LayerNorm(output_dim, elementwise_affine=elementwise_affine),
# If num_modes == 1, then simply remove the mode dim. Otherwise, aggregate the modes.
LearnedSoftAggregate(num_feat=output_dim, group_dim=2, keepdim=False) if num_modes > 1 \
else Rearrange('b n () d -> b n d'),
nn.Dropout(p_dropout),
)
# Low-rank to high-rank transformation.
def Lora2Hira(lora_rank, hira_rank, output_dim, num_modes, elementwise_affine=True, p_dropout=0.1):
return nn.Sequential(
# Permute to [BS, output_dim, lora_rank].
Rearrange('b q d -> b d q'),
# Project to [BS, output_dim, hira_rank].
nn.Linear(lora_rank, hira_rank * num_modes, bias=False),
# Reshape and permute to [BS, num_modes, num_output_vecs, output_dim].
Rearrange('b d (m q) -> b m q d', m=num_modes, q=hira_rank),
nn.LayerNorm(output_dim, elementwise_affine=elementwise_affine),
# Aggregate [BS, num_modes, hira_rank, output_dim] -> [BS, hira_rank, output_dim].
LearnedSoftAggregate(num_feat=output_dim, group_dim=1, keepdim=False) if num_modes > 1 \
else Rearrange('b () q d -> b q d'),
nn.Dropout(p_dropout),
)
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, num_heads=8, elementwise_affine=True):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.num_heads = num_heads
inner_dim = dim_head * num_heads
self.norm1 = nn.LayerNorm(dim, elementwise_affine=elementwise_affine)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=elementwise_affine)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latent_queries):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latent_queries = self.norm2(latent_queries)
b, l, _ = latent_queries.shape
q = self.to_q(latent_queries)
kv_input = torch.cat((x, latent_queries), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.num_heads)
k = reshape_tensor(k, self.num_heads)
v = reshape_tensor(v, self.num_heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
attn = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = attn @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class CrossAttention(nn.Module):
# output_dim is always the same as input_dim.
# num_q only matters when q_aware_to_v is True.
# If q_aware_to_v is False, query x in forward() is still usable.
def __init__(self, input_dim, num_heads=6, p_dropout=0.05,
identity_to_q=False, identity_to_k=False, identity_to_v=False, v_has_skip=True,
q_aware_to_v=True, num_q=416, v_repeat=4, q_aware_to_v_lora_rank=64,
identity_to_out=False, out_has_skip=False):
super().__init__()
dim_head = input_dim // num_heads
inner_dim = dim_head * num_heads
self.num_heads = num_heads
self.q_aware_to_v = q_aware_to_v
self.v_has_skip = v_has_skip
self.to_q = nn.Sequential(
nn.Linear(input_dim, inner_dim, bias=False),
nn.LayerNorm(inner_dim, elementwise_affine=True)
) if not identity_to_q else nn.Identity()
self.to_k = nn.Sequential(
nn.Linear(input_dim, inner_dim, bias=False),
nn.LayerNorm(inner_dim, elementwise_affine=True)
) if not identity_to_k else nn.Identity()
self.v_repeat = v_repeat
self.num_q_group = num_q_group = num_q // v_repeat # 416 / 4 = 104.
# If q_aware_to_v is True, then self.to_v consists of num_q projections of input_dim to inner_dim.
# Otherwise, self.to_v consists of a single projection of input_dim to inner_dim.
if q_aware_to_v:
# all_q_mid: 104 * 64 = 6656.
all_q_mid = num_q_group * q_aware_to_v_lora_rank
self.to_v = nn.Sequential(
# number of params: 768 * 6656 = 5,111,808.
# Input: [BS, 16, 768]. Output: [BS, 16, 104*64] = [BS, 16, 6656].
# Each 768-dim vec is dispersed into 104 64-dim vecs.
nn.Linear(input_dim, all_q_mid, bias=False),
nn.LayerNorm(all_q_mid, elementwise_affine=True),
# Change the dim of the tensor to [BS, 6656, 16], as Conv1d transforms dim 1.
Rearrange('b n q -> b q n', q=all_q_mid),
# Each q_aware_to_v projection has its own linear layer.
# The total number of parameters will be 6656*768 = 5,111,808.
# Output: [BS, 104*768, 16]. Each 64 dim feature is expanded to 768 dim.
nn.Conv1d(
in_channels=all_q_mid,
out_channels=num_q_group * input_dim,
kernel_size=1,
groups=num_q_group,
bias=False,
),
# Output: [BS, 104, 16, 768].
Rearrange('b (q d) n -> b q n d', q=num_q_group, d=input_dim),
nn.LayerNorm(input_dim, elementwise_affine=True),
)
else:
self.to_v = nn.Sequential(
nn.Linear(input_dim, inner_dim, bias=False),
nn.LayerNorm(inner_dim, elementwise_affine=True)
) if not identity_to_v else nn.Identity()
if identity_to_out:
assert not out_has_skip, "identity_to_out=True, then out_has_skip has to be False."
if identity_to_out:
self.to_out = nn.Identity()
else:
self.to_out = nn.Sequential(
nn.Linear(input_dim, input_dim, bias=False),
nn.Dropout(p_dropout),
nn.LayerNorm(inner_dim, elementwise_affine=True)
)
self.out_has_skip = out_has_skip
self.attn_drop = nn.Dropout(p_dropout)
def forward(self, x, context=None, attn_mat=None, return_attn=False):
h = self.num_heads
if context is None:
context = x
if attn_mat is None:
# q: [BS, Q, D] -> [BS, Q, D].
q = self.to_q(x)
# k: [BS, L, D] -> [BS, L, D].
k = self.to_k(context)
# q: [6, 512, 128], k: [6, 17, 128].
q, k = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k))
if self.q_aware_to_v:
# context: [BS, L, D]. v: [BS, Q, L, D].
# There are effectively Q to_v projections.
v = self.to_v(context)
if self.v_has_skip:
v = v + context.unsqueeze(1)
else:
# v: [BS, L, D].
v = self.to_v(context)
if self.v_has_skip:
v = v + context
#print(v.shape)
if self.q_aware_to_v:
# v: [6, 64, 17, 128].
# v is query-specific, so there's an extra dim for the query.
v = rearrange(v, 'b q n (h d) -> (b h) q n d', h=h).contiguous()
# Each v is for a query group with 512/64 = 8 queries.
# So each v is repeated 8 times to match the number of queries.
# v: [6, 64, 17, 128] -> [6, 512, 17, 128].
v = v.repeat(1, self.v_repeat, 1, 1)
else:
v = rearrange(v, 'b n (h d) -> (b h) n d', h=h).contiguous()
if attn_mat is None:
scale = q.size(-1) ** -0.25
sim = einsum('b i d, b j d -> b i j', q * scale, k * scale)
# sim: [6, 64, 17]. 6: bs 1 * h 6.
# attention, what we cannot get enough of
# NOTE: the normalization is done across tokens, not across pixels.
# So for each pixel, the sum of attention scores across tokens is 1.
attn = sim.softmax(dim=-1)
attn = self.attn_drop(attn)
#print(attn.std())
else:
attn = attn_mat
if self.q_aware_to_v:
# attn: [6, 32, 17]. v: [6, 32, 17, 128]. 128: dim of each head. out: [6, 32, 128].
# out is combined with different attn weights and v for different queries.
out = einsum('b i j, b i j d -> b i d', attn, v)
else:
# v: [6, 17, 128]. out: [6, 32, 128].
out = einsum('b i j, b j d -> b i d', attn, v)
# [6, 32, 128] -> [1, 32, 768].
out = rearrange(out, '(b h) n d -> b n (h d)', h=h).contiguous()
if self.out_has_skip:
out = self.to_out(out) + out
else:
out = self.to_out(out)
if return_attn:
return out, attn
else:
return out
class ImgPrompt2TextPrompt(nn.Module):
def __init__(self, placeholder_is_bg, num_id_vecs, num_static_img_suffix_embs,
max_prompt_length=77, img_prompt_dim=768, dtype=torch.float16):
super().__init__()
self.N_ID = num_id_vecs
# If not placeholder_is_bg, then N_SFX will be updated in initialize_text_components().
self.N_SFX = 0
self.dtype = dtype
if not placeholder_is_bg:
self.initialize_static_img_suffix_embs(num_static_img_suffix_embs, img_prompt_dim)
self.initialize_text_components(max_prompt_length)
# prompt2token_proj: arc2face_models.py CLIPTextModelWrapper instance with **custom weights**.
# prompt2token_proj is with the same architecture as the original arc2face text encoder,
# but retrained to do inverse mapping.
# To be initialized in the subclass.
self.prompt2token_proj = None
def initialize_static_img_suffix_embs(self, num_static_img_suffix_embs, img_prompt_dim=768):
self.N_SFX = num_static_img_suffix_embs
# We always take the first num_static_img_suffix_embs embeddings out of static_img_suffix_embs.
# So it's OK that static_img_suffix_embs is larger than required number num_static_img_suffix_embs.
# This holds even if num_static_img_suffix_embs is 0.
if hasattr(self, 'static_img_suffix_embs') and self.static_img_suffix_embs is not None:
if self.static_img_suffix_embs.shape[1] == self.N_SFX:
print(f"static_img_suffix_embs had been initialized to be {self.static_img_suffix_embs.shape[1]} vecs ({self.N_SFX} required). Skip initialization.")
elif self.static_img_suffix_embs.shape[1] < self.N_SFX:
print(f"static_img_suffix_embs had been initialized to be {self.static_img_suffix_embs.shape[1]} vecs (< {self.N_SFX} required). Reinitialize.")
self.static_img_suffix_embs = nn.Parameter(torch.randn(1, self.N_SFX, img_prompt_dim, dtype=self.dtype))
elif self.N_SFX > 0:
# self.static_img_suffix_embs.shape[1] > self.N_SFX > 0.
print(f"static_img_suffix_embs had been initialized to be {self.static_img_suffix_embs.shape[1]} vecs (> {self.N_SFX} required). Truncate.")
self.static_img_suffix_embs = nn.Parameter(self.static_img_suffix_embs[:, :self.N_SFX].to(dtype=self.dtype))
else:
# self.static_img_suffix_embs.shape[1] > self.N_SFX == 0.
print(f"static_img_suffix_embs had been initialized to be {self.static_img_suffix_embs.shape[1]} vecs (0 required). Erase.")
self.static_img_suffix_embs = None
else:
if self.N_SFX > 0:
# Either static_img_suffix_embs does not exist or is None,
# or it's initialized but has fewer than num_static_img_suffix_embs embeddings (this situation should be very rare,
# so we don't consider to reuse and extend a shorter static_img_suffix_embs).
# So we reinitialize it.
self.static_img_suffix_embs = nn.Parameter(torch.randn(1, self.N_SFX, img_prompt_dim, dtype=self.dtype))
else:
# If static_img_suffix_embs had been initialized, then it will be set to None, i.e., erased from the SubjBasisGenerator instance.
self.static_img_suffix_embs = None
# Implement a separate initialization function, so that it can be called from SubjBasisGenerator
# after the SubjBasisGenerator is initialized. This can be used to fix old SubjBasisGenerator
# ckpts which were not subclassed from ImgPrompt2TextPrompt.
def initialize_text_components(self, max_prompt_length=77):
self.max_prompt_length = max_prompt_length
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
# clip_text_embeddings: CLIPTextEmbeddings instance.
clip_text_embeddings = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").text_model.embeddings
# clip_text_embeddings() and clip_text_embeddings.token_embedding() differ in that
# clip_text_embeddings() adds positional embeddings, while clip_text_embeddings.token_embedding() doesn't.
# Adding positional embeddings seems to help somewhat.
# pad_tokens: pad_token_id 49407 repeated 77 times.
# pad_token_id is the EOS token. But BOS is 49406.
pad_tokens = torch.tensor([self.tokenizer.pad_token_id]).repeat(self.max_prompt_length)
# pad_embeddings: [77, 768].
# pad_embeddings is still on CPU. But should be moved to GPU automatically.
# Note: detach pad_embeddings from the computation graph, otherwise
# deepcopy() in embedding_manager.py:make_frozen_copy_of_subj_basis_generators() will fail.
self.pad_embeddings = clip_text_embeddings(pad_tokens)[0].detach().to(self.dtype)
# image prompt space -> text prompt space.
# return_emb_types: a list of strings, each string is among
# ['full', 'core', 'full_pad', 'full_half_pad'].
def inverse_img_prompt_embs(self, face_prompt_embs, list_extra_words,
return_emb_types, hidden_state_layer_weights=None,
enable_static_img_suffix_embs=False):
'''
face_prompt_embs: (BS, self.N_ID, 768), in the image prompt space.
Only the core embeddings, no paddings.
list_extra_words: None or [s_1, ..., s_BS], each s_i is a list of extra words to be added to the prompt.
'''
if list_extra_words is not None:
if len(list_extra_words) != len(face_prompt_embs):
if len(face_prompt_embs) > 1:
print("Warn: list_extra_words has different length as face_prompt_embs.")
if len(list_extra_words) == 1:
list_extra_words = list_extra_words * len(face_prompt_embs)
else:
breakpoint()
else:
# len(face_prompt_embs) == 1, this occurs when same_subject_in_batch == True, e.g. in do_feat_distill_on_comp_prompt.
# But list_extra_words always corresponds to the actual batch size. So we only take the first element.
list_extra_words = list_extra_words[:1]
for extra_words in list_extra_words:
assert len(extra_words.split()) <= 2, "Each extra_words string should consist of at most 2 words."
# 16 or 4 ", " are placeholders for face_prompt_embs.
prompt_templates = [ "photo of a " + ", " * self.N_ID + list_extra_words[i] for i in range(len(list_extra_words)) ]
else:
# 16 or 4 ", " are placeholders for face_prompt_embs.
# No extra words are added to the prompt. So we add 2 more ", " to the template to keep
# the number of tokens roughly the same as when extra words are added.
prompt_templates = [ "photo of a " + ", " * (self.N_ID + 2) for _ in range(len(face_prompt_embs)) ]
# This step should be quite fast, and there's no need to cache the input_ids.
# input_ids: [BS, 77].
input_ids = self.tokenizer(
prompt_templates,
truncation=True,
padding="max_length",
max_length=self.max_prompt_length,
return_tensors="pt",
).input_ids.to(face_prompt_embs.device)
face_prompt_embs_orig_dtype = face_prompt_embs.dtype
face_prompt_embs = face_prompt_embs.to(self.dtype)
ID_END = 4 + self.N_ID
PAD_BEGIN = ID_END + self.N_SFX + 2
# token_embs: [1, 77, 768]. This call is only to get the template token embeddings (the shallowest mapping).
token_embs = self.prompt2token_proj(input_ids=input_ids, return_token_embs=True)
# token 4: first ", " in the template prompt.
# Replace embeddings of 16 or 4 placeholder ", " with face_prompt_embs.
token_embs[:, 4:ID_END] = face_prompt_embs
# Only when do_unet_distill == True, we append the static image suffix embeddings.
# Otherwise, static image suffix embeddings are ignored,
# and token_embs[:, ID_END:ID_END+self.N_SFX] are the filler embeddings of the
# extra ", " in the template prompt.
if enable_static_img_suffix_embs and self.N_SFX > 0:
# Put the static image suffix embeddings right after face_prompt_embs.
token_embs[:, ID_END:ID_END+self.N_SFX] = self.static_img_suffix_embs[:, :self.N_SFX]
# This call does the ordinary CLIP text encoding pass.
prompt_embeds = self.prompt2token_proj(
input_ids=input_ids,
input_token_embs=token_embs,
hidden_state_layer_weights=hidden_state_layer_weights,
return_token_embs=False
)[0]
# Restore the original dtype of prompt_embeds: float16 -> float32.
prompt_embeds = prompt_embeds.to(face_prompt_embs_orig_dtype)
# token 4: first ", " in the template prompt.
# When N_ID == 16,
# prompt_embeds 4:20 are the most important 16 embeddings that contain the subject's identity.
# 20:22 are embeddings of the (at most) two extra words.
# [N, 77, 768] -> [N, 16, 768]
if enable_static_img_suffix_embs:
core_prompt_embs = prompt_embeds[:, 4:ID_END+self.N_SFX]
else:
core_prompt_embs = prompt_embeds[:, 4:ID_END]
if list_extra_words is not None:
# [N, 16, 768] -> [N, 18, 768]
extra_words_embs = prompt_embeds[:, ID_END+self.N_SFX:PAD_BEGIN]
core_prompt_embs = torch.cat([core_prompt_embs, extra_words_embs], dim=1)
returned_prompt_embs = []
for emb_type in return_emb_types:
if emb_type == 'full':
returned_prompt_embs.append(prompt_embeds)
elif emb_type == 'full_half_pad':
prompt_embeds2 = prompt_embeds.clone()
# PAD_BEGIN is 22 or 10. Also exclude the last EOS token.
# So we subtract max_prompt_length by (PAD_BEGIN + 1).
PADS = self.max_prompt_length - PAD_BEGIN - 1
if PADS >= 2:
# Fill half of the remaining embeddings with pad embeddings.
prompt_embeds2[:, PAD_BEGIN:PAD_BEGIN+PADS//2] = self.pad_embeddings[PAD_BEGIN:PAD_BEGIN+PADS//2]
returned_prompt_embs.append(prompt_embeds2)
elif emb_type == 'full_pad':
prompt_embeds2 = prompt_embeds.clone()
# Replace the PAD_BEGIN-th to the second last embeddings with pad embeddings.
# Skip replacing the last embedding, which might has special roles.
# (Although all padding tokens are the same EOS, the last token might acquire special semantics
# due to its special position.)
prompt_embeds2[:, PAD_BEGIN:-1] = self.pad_embeddings[PAD_BEGIN:-1]
returned_prompt_embs.append(prompt_embeds2)
elif emb_type == 'full_zeroed_extra':
prompt_embeds2 = prompt_embeds.clone()
# Only add two pad embeddings. The remaining embeddings are set to 0.
# Make the positional embeddings align with the actual positions.
prompt_embeds2[:, 22:24] = self.pad_embeddings[22:24]
prompt_embeds2[:, 24:-1] = 0
returned_prompt_embs.append(prompt_embeds2)
elif emb_type == 'core':
returned_prompt_embs.append(core_prompt_embs)
else:
breakpoint()
return returned_prompt_embs
class SubjBasisGenerator(ImgPrompt2TextPrompt):
def __init__(
self,
dtype=torch.float16,
# number of cross-attention heads of the bg prompt translator.
# Taken as a half of the number of heads 12 of OpenAI clip-vit-large-patch14:
# https://huggingface.co/openai/clip-vit-large-patch14/blob/main/config.json
num_bg_encoder_heads=6,
# number of subject input identity vectors (only when the subject is not face),
# or number of background input identity vectors (no matter the subject is face or not).
# 257: 257 CLIP tokens.
num_nonface_in_id_vecs={ 'subj': 77, 'bg': 257 },
num_ca_layers=16,
num_id_vecs=16, # num_id_vecs: subj: 16. bg: 4.
num_static_img_suffix_embs: int = 0, # Number of extra static learnable image embeddings appended to translated ID embeddings.
bg_image_embedding_dim=1024, # CLIP image hidden layer feature dimension, as per config.json above.
obj_embedding_dim=384, # DINO object feature dimension for objects.
output_dim=768, # CLIP text embedding input dimension.
use_layerwise_proj: bool = False, # Whether to use layerwise projection.
placeholder_is_bg: bool = False, # Whether the placeholder is for the image background tokens.
learnable_hidden_state_weights_scheme: str = 'per-layer', # none, per-layer.
bg_prompt_translator_has_to_out_proj: bool = False, # Whether the prompt_trans_layers have a to_out projection.
):
# If not placeholder_is_bg, then it calls initialize_text_components() in the superclass.
super().__init__(placeholder_is_bg=placeholder_is_bg, num_id_vecs=num_id_vecs,
num_static_img_suffix_embs=num_static_img_suffix_embs,
max_prompt_length=77, img_prompt_dim=output_dim, dtype=dtype)
self.placeholder_is_bg = placeholder_is_bg
self.num_ca_layers = num_ca_layers
self.num_out_embs = self.N_ID + self.N_SFX
self.output_dim = output_dim
# num_nonface_in_id_vecs should be the number of core ID embs, 16.
# However, in such case, pos_embs is not used. So it doesn't matter if it's wrongly set.
self.num_nonface_in_id_vecs = num_nonface_in_id_vecs['bg'] if placeholder_is_bg else num_nonface_in_id_vecs['subj']
self.bg_prompt_translator_has_to_out_proj = bg_prompt_translator_has_to_out_proj
if not self.placeholder_is_bg:
# [1, 384] -> [1, 16, 768].
# TODO: use CLIPTextModelWrapper as obj_proj_in.
self.obj_proj_in = ExpandEmbs(obj_embedding_dim, output_dim, expansion_ratio=self.num_nonface_in_id_vecs)
# ** prompt2token_proj does the actual job: **
# it is the inverse projection that maps from faceid2img_prompt_embs to adaface_prompt_embs.
# self.prompt2token_proj: [1, 16, 768] -> [1, 77, 768] (with paddings) or [1, 16, 768] (without paddings).
# If self.placeholder_is_bg: prompt2token_proj is set to None.
# Use an attention dropout of 0.2 to increase robustness.
self.prompt2token_proj = CLIPTextModelWrapper.from_pretrained('openai/clip-vit-large-patch14')
self.prompt2token_proj.to(dtype=self.dtype)
if use_layerwise_proj:
# MLPProjWithSkip: MLP with skip connection.
# [BS, 4, 768] -> [BS, 16, 4, 768]. Extra 16: 16 layers.
self.layerwise_proj = LayerwiseMLPProjWithSkip(output_dim, dim_mult=2)
else:
self.layerwise_proj = nn.Identity() #Rearrange('b n d -> b l n d', l=16)
print(f"Subj prompt2token_proj initialized.")
# Only freeze token and positional embeddings of the original CLIPTextModel.
self.freeze_prompt2token_proj()
# These multipliers are relative to the original CLIPTextModel.
self.prompt2token_proj_attention_multipliers = [1] * 12
self.initialize_hidden_state_layer_weights(learnable_hidden_state_weights_scheme, 'cpu')
self.bg_proj_in = None
self.pos_embs = self.pos_embs_ln = self.latent_queries = self.latent_queries_ln = None
else:
# For background placeholders, face and object embeddings are not used as they are foreground.
self.obj_proj_in = None
self.bg_proj_in = nn.Sequential(
nn.Linear(bg_image_embedding_dim, output_dim, bias=False),
nn.LayerNorm(output_dim),
)
self.pos_embs = nn.Parameter(torch.zeros(1, self.num_nonface_in_id_vecs, output_dim))
self.pos_embs_ln = nn.LayerNorm(output_dim)
self.latent_queries = nn.Parameter(torch.randn(1, self.num_out_embs, output_dim))
self.latent_queries_ln = nn.LayerNorm(output_dim)
identity_to_v = False
v_has_skip = not identity_to_v # True
identity_to_out = not bg_prompt_translator_has_to_out_proj # True
out_has_skip = not identity_to_out # False
# prompt_translator maps the clip image features (of the background) to the prompt embedding space.
# It is only used during training when placeholder_is_bg is True.
# prompt_translator has a to_v projection with skip connection, and doesn't have a to_out projection.
# dim=768, num_bg_encoder_heads=6.
self.prompt_translator = \
CrossAttention(input_dim=output_dim, num_heads=num_bg_encoder_heads, p_dropout=0.05,
identity_to_q=False, identity_to_k=False, identity_to_v=identity_to_v,
q_aware_to_v=False, v_has_skip=v_has_skip,
num_q=0, # When not q_aware_to_v, num_q is not referenced.
identity_to_out=identity_to_out,
out_has_skip=out_has_skip)
if self.dtype == torch.float16:
self.prompt_translator = self.prompt_translator.half()
self.output_scale = output_dim ** -0.5
'''
prompt_translator: CLIPEncoder
# https://github.com/huggingface/transformers/blob/1872bde7fc6a5d6796bd742bc2dc38eaf8069c5d/src/transformers/models/clip/modeling_clip.py#L566
# CLIPEncoder.layers: 12 layers of CLIPEncoderLayer, each being
(0): CLIPEncoderLayer(
(self_attn): CLIPAttention(
(k_proj): Linear(in_features=768, out_features=768, bias=True)
(v_proj): Linear(in_features=768, out_features=768, bias=True)
(q_proj): Linear(in_features=768, out_features=768, bias=True)
(out_proj): Linear(in_features=768, out_features=768, bias=True)
)
(layer_norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): CLIPMLP(
(activation_fn): QuickGELUActivation()
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(fc2): Linear(in_features=3072, out_features=768, bias=True)
)
(layer_norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
'''
print(repr(self))
# raw_id_embs: only used when the subject is non-faces. In that case it's DINO embeddings.
# Otherwise, raw_id_embs is not used.
# faceid2img_prompt_embs: [BS, 16, 768], the core ID prompt embeddings generated by ID2ImgPrompt.
def forward(self, faceid2img_prompt_embs, clip_features=None, raw_id_embs=None, out_id_embs_cfg_scale=1.0,
is_face=True, enable_static_img_suffix_embs=False):
if not self.placeholder_is_bg:
BS = faceid2img_prompt_embs.shape[0]
else:
# If bg, then faceid2img_prompt_embs is set to None, but clip_features is not None.
BS = clip_features.shape[0]
clip_features = clip_features.to(self.dtype)
# No need to use raw_id_embs if placeholder_is_bg.
if not self.placeholder_is_bg:
if is_face:
assert faceid2img_prompt_embs is not None
# id2img_embs has been projected to the (modified) prompt embedding space
# by ID2AdaPrompt::map_init_id_to_img_prompt_embs(). This prompt embedding space is modified because
# the ID2ImgPrompt module (at least when it's arc2face) may have finetuned the
# text encoder and the U-Net.
# in embedding_manager: [BS, 16, 768] -> [BS, 77, 768].
# faceid2img_prompt_embs is part of id2img_embs: [BS, 77, 768] -> [BS, 16, 768].
# adaface_prompt_embs is projected to the prompt embedding spaces. This is the
# original U-Net prompt embedding space.
# hidden_state_layer_weights: [[0.9163], [0.9483], [2.0762]]
hidden_state_layer_weights = self.hidden_state_layer_weights_grad_scaler(self.hidden_state_layer_weights)
# faceid2img_prompt_embs -> ada_id_embs: image prompt space -> text prompt space.
# inverse_img_prompt_embs() applies self.prompt2token_proj to faceid2img_prompt_embs.
# If list_extra_words is not None, then ada_id_embs: [BS, 18, 768], three leading words, the 16 identity tokens
# and (at most) two extra words in adaface_prompt_embs, without BOS and EOS.
# If list_extra_words is None, then ada_id_embs: [BS, 16, 768], the 16 identity tokens in adaface_prompt_embs.
# hidden_state_layer_weights: [[0.9163], [0.9483], [2.0762]]
# ada_id_embs: [BS, 16, 768].
# return_emb_types: a list of strings, each string is among
# ['full', 'core', 'full_pad', 'full_half_pad'].
ada_id_embs, = \
self.inverse_img_prompt_embs(faceid2img_prompt_embs,
list_extra_words=None,
return_emb_types=['core'],
hidden_state_layer_weights=hidden_state_layer_weights,
enable_static_img_suffix_embs=enable_static_img_suffix_embs)
elif raw_id_embs is not None:
# id_embs: [BS, 384] -> [BS, 18, 768].
# obj_proj_in is expected to project the DINO object features to
# the token embedding space. So no need to use prompt2token_proj.
id_embs = self.obj_proj_in(raw_id_embs)
else:
breakpoint()
else:
# Otherwise, context is the ad-hoc CLIP image features.
# id_embs: [BS, 257, 768].
id_embs = self.bg_proj_in(clip_features)
if self.placeholder_is_bg:
id_embs = id_embs + self.pos_embs_ln(self.pos_embs)
latent_queries = self.latent_queries_ln(self.latent_queries).repeat(BS, 1, 1)
# If bg, we don't have to use a specific attn layer for each 4-vec set. Instead, one attn layer can generate 257 embs,
# and we take the first 16*4=64.
# Output of prompt_translator is exactly num_out_embs == 64 tokens. id_embs_out: [BS, 64, 768].
# prompt_translator: better named as bg_prompt_translator. It maps the bg features
# to bg prompt embeddings.
with torch.set_grad_enabled(self.training):
id_embs_out = self.prompt_translator(latent_queries, id_embs)
adaface_out_embs = id_embs_out * self.output_scale # * 0.036
else:
# [BS, 16, 768] -> [BS, layers=16, tokens=16, 768]
adaface_out_embs = self.layerwise_proj(ada_id_embs)
# If out_id_embs_cfg_scale < 1, adaface_out_embs is a mix of adaface_out_embs and pad_embeddings.
if out_id_embs_cfg_scale != 1:
# pad_embeddings: [77, 768] -> [16, 768] -> [1, 1, 16, 768].
# NOTE: Never do cfg on static image suffix embeddings.
# So we take self.N_ID embeddings, instead of self.N_ID + self.N_SFX,
# even if enable_static_img_suffix_embs=True.
pad_embeddings = self.pad_embeddings[4:4+self.N_ID].unsqueeze(0).unsqueeze(1).to(ada_id_embs.device)
adaface_out_embs[:, :self.N_ID] = ada_id_embs[:, :self.N_ID] * out_id_embs_cfg_scale \
+ pad_embeddings * (1 - out_id_embs_cfg_scale)
return adaface_out_embs
def initialize_hidden_state_layer_weights(self, learnable_hidden_state_weights_scheme, device):
if learnable_hidden_state_weights_scheme == 'none':
self.hidden_state_layer_weights = None
# A grad scaler with alpha =1 is nn.Identity(), which outputs None given None as input.
self.hidden_state_layer_weights_grad_scaler = gen_gradient_scaler(1)
print("hidden_state_layer_weights is set to None.")
elif learnable_hidden_state_weights_scheme == 'per-layer':
# Learnable weights of the last 3 layers, initialized to putting more focus on the last layer.
# 'per-layer': Different weights for different layers, but the same for different channels.
# hidden_state_layer_weights: [3, 1].
self.hidden_state_layer_weights = nn.Parameter(torch.tensor([[1.0], [2.0], [4.0]], device=device),
requires_grad=True)
# A gradient scaler of 5 makes the gradients on hidden_state_layer_weights 5 times larger.
self.hidden_state_layer_weights_grad_scaler = gen_gradient_scaler(5)
print("hidden_state_layer_weights initialized as per-layer [1, 2, 4], with grad scaler 5.")
else:
breakpoint()
def extend_prompt2token_proj_attention(self, prompt2token_proj_attention_multipliers=None,
begin_layer_idx=-1, end_layer_idx=-1, multiplier=1, perturb_std=0.1):
if begin_layer_idx == -1:
begin_layer_idx = 0
if end_layer_idx == -1:
end_layer_idx = 11
if prompt2token_proj_attention_multipliers is None and multiplier == 1:
print("prompt2token_proj_attention_multipliers are all 1. No extension is done.")
return
elif prompt2token_proj_attention_multipliers is None:
# prompt2token_proj_attention_multipliers are relative to the current prompt2token_proj.
prompt2token_proj_attention_multipliers = [1] * 12
for i in range(begin_layer_idx, end_layer_idx+1):
prompt2token_proj_attention_multipliers[i] = multiplier
# Otherwise, use the given prompt2token_proj_attention_multipliers.
num_extended_layers = self.prompt2token_proj.extend_clip_attention_MKV_multiplier(prompt2token_proj_attention_multipliers, perturb_std)
# Update prompt2token_proj_attention_multipliers (relative to the original CLIPTextModel).
for i in range(begin_layer_idx, end_layer_idx+1):
self.prompt2token_proj_attention_multipliers[i] *= prompt2token_proj_attention_multipliers[i]
print(f"{num_extended_layers} layers in prompt2token_proj_attention are extended by {prompt2token_proj_attention_multipliers}")
return num_extended_layers
def squeeze_prompt2token_proj_attention(self, prompt2token_proj_attention_divisors=None,
begin_layer_idx=-1, end_layer_idx=-1, divisor=1):
if begin_layer_idx == -1:
begin_layer_idx = 0
if end_layer_idx == -1:
end_layer_idx = 11
if prompt2token_proj_attention_divisors is None and divisor == 1:
print("prompt2token_proj_attention_divisors are all 1. No squeezing is done.")
return
elif prompt2token_proj_attention_divisors is None:
prompt2token_proj_attention_divisors = [1] * 12
for i in range(begin_layer_idx, end_layer_idx+1):
prompt2token_proj_attention_divisors[i] = divisor
# Otherwise, use the given prompt2token_proj_attention_divisors.
num_squeezed_layers = self.prompt2token_proj.squeeze_clip_attention_MKV_divisor(prompt2token_proj_attention_divisors)
# Update prompt2token_proj_attention_multipliers (relative to the original CLIPTextModel).
for i in range(begin_layer_idx, end_layer_idx+1):
self.prompt2token_proj_attention_multipliers[i] //= prompt2token_proj_attention_divisors[i]
print(f"{num_squeezed_layers} layers in prompt2token_proj_attention are squeezed by {prompt2token_proj_attention_divisors}")
return num_squeezed_layers
def freeze_prompt2token_proj(self):
# Only applicable to fg basis generator.
if self.placeholder_is_bg:
return
if self.prompt2token_proj is not None:
frozen_param_names = []
for param_name, param in self.prompt2token_proj.text_model.embeddings.named_parameters():
if param.requires_grad:
param.requires_grad = False
frozen_param_names.append(param_name)
# If param is already frozen, then no need to freeze it again.
print(f"{len(frozen_param_names)} params of token_pos_embeddings in Subj prompt2token_proj is frozen.")
#print(f"Frozen parameters:\n{frozen_param_names}")
def patch_old_subj_basis_generator_ckpt(self):
# Fix compatability with the previous version.
if not hasattr(self, 'bg_prompt_translator_has_to_out_proj'):
self.bg_prompt_translator_has_to_out_proj = False
if hasattr(self, 'num_id_vecs') and not hasattr(self, 'N_ID'):
self.N_ID = self.num_id_vecs
# Update the number of output embeddings.
self.num_out_embs = self.N_ID + self.N_SFX
if not hasattr(self, 'num_nonface_in_id_vecs') and hasattr(self, 'N_ID'):
self.num_nonface_in_id_vecs = self.N_ID
if not hasattr(self, 'dtype'):
self.dtype = torch.float16
if not self.placeholder_is_bg:
self.prompt2token_proj.to(dtype=self.dtype)
else:
self.prompt_translator.half()
if not hasattr(self, 'num_ca_layers'):
self.num_ca_layers = 16
if self.placeholder_is_bg:
if not hasattr(self, 'pos_embs') or self.pos_embs is None:
self.pos_embs = nn.Parameter(torch.zeros(1, self.num_nonface_in_id_vecs, self.output_dim))
if not hasattr(self, 'latent_queries') or self.latent_queries is None:
self.latent_queries = nn.Parameter(torch.randn(1, self.num_out_embs, self.output_dim))
# Background encoder doesn't require initializing text components.
else:
self.initialize_hidden_state_layer_weights('per-layer', 'cpu')
if not hasattr(self, 'prompt2token_proj_attention_multipliers'):
# Please manually set prompt2token_proj_attention_multipliers in the ckpt.
breakpoint()
self.initialize_text_components(max_prompt_length=77, num_id_vecs=self.N_ID,
num_static_img_suffix_embs=self.N_SFX,
img_prompt_dim=self.output_dim)
if not hasattr(self, 'use_layerwise_proj'):
self.use_layerwise_proj = False
if not hasattr(self, 'layerwise_proj'):
if self.use_layerwise_proj:
self.layerwise_proj = LayerwiseMLPProjWithSkip(self.output_dim, dim_mult=2)
else:
self.layerwise_proj = nn.Identity()
def __repr__(self):
type_sig = 'subj' if not self.placeholder_is_bg else 'bg'
return f"{type_sig} SubjBasisGenerator: num_out_embs={self.num_out_embs}, " \
f"bg_prompt_translator_has_to_out_proj={self.bg_prompt_translator_has_to_out_proj}"
|