File size: 13,957 Bytes
76ccb95
8ee7393
76ccb95
 
 
 
 
 
 
 
 
 
 
 
8ee7393
76ccb95
8ee7393
76ccb95
 
 
 
 
 
 
8ee7393
76ccb95
8ee7393
76ccb95
8ee7393
76ccb95
 
 
 
8ee7393
76ccb95
 
 
8ee7393
 
 
 
 
76ccb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee7393
 
 
 
76ccb95
 
 
 
 
 
 
 
 
 
 
 
8ee7393
 
 
 
 
 
76ccb95
 
 
 
8ee7393
 
 
 
 
 
76ccb95
 
 
 
 
 
 
 
 
 
8ee7393
76ccb95
 
 
8ee7393
76ccb95
 
8ee7393
76ccb95
8ee7393
 
 
 
 
 
76ccb95
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee7393
76ccb95
 
 
 
8ee7393
76ccb95
 
 
 
 
8ee7393
 
 
 
 
 
 
 
 
 
 
 
 
76ccb95
 
 
8ee7393
 
76ccb95
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee7393
 
76ccb95
 
8ee7393
76ccb95
8ee7393
 
76ccb95
8ee7393
76ccb95
 
 
 
 
 
8ee7393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ccb95
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee7393
 
76ccb95
 
8ee7393
76ccb95
 
 
 
 
 
 
 
 
8ee7393
76ccb95
8ee7393
76ccb95
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
from torch import nn
import numpy as np
from diffusers import UNet2DConditionModel
from adaface.util import UNetEnsemble, create_consistentid_pipeline
from diffusers import UNet2DConditionModel
from omegaconf.listconfig import ListConfig

def create_unet_teacher(teacher_type, device='cpu', **kwargs):
    # If teacher_type is a list with only one element, we dereference it.
    if isinstance(teacher_type, (tuple, list, ListConfig)) and len(teacher_type) == 1:
        teacher_type = teacher_type[0]

    if teacher_type == "arc2face":
        teacher = Arc2FaceTeacher(**kwargs)
    elif teacher_type == "unet_ensemble":
        # unet, extra_unet_dirpaths and unet_weights_in_ensemble are passed in kwargs.
        # Even if we distill from unet_ensemble, we still need to load arc2face for generating 
        # arc2face embeddings.
        # The first (optional) ctor param of UNetEnsembleTeacher is an instantiated unet, 
        # in our case, the ddpm unet. Ideally we should reuse it to save GPU RAM.
        # However, since the __call__ method of the ddpm unet takes different formats of params, 
        # for simplicity, we still use the diffusers unet.
        # unet_teacher is put on CPU first, then moved to GPU when DDPM is moved to GPU.
        teacher = UNetEnsembleTeacher(device=device, **kwargs)
    elif teacher_type == "consistentID":
        teacher = ConsistentIDTeacher(**kwargs)
    elif teacher_type == "simple_unet":
        teacher = SimpleUNetTeacher(**kwargs)
    # Since we've dereferenced the list if it has only one element, 
    # this holding implies the list has more than one element. Therefore it's UNetEnsembleTeacher.
    elif isinstance(teacher_type, (tuple, list, ListConfig)):
        # teacher_type is a list of teacher types. So it's UNetEnsembleTeacher.
        teacher = UNetEnsembleTeacher(unet_types=teacher_type, device=device, **kwargs)
    else:
        raise NotImplementedError(f"Teacher type {teacher_type} not implemented.")
    
    for param in teacher.parameters():
        param.requires_grad = False
    return teacher

class UNetTeacher(nn.Module):
    def __init__(self, **kwargs):
        super().__init__()
        self.name = None
        # self.unet will be initialized in the child class.
        self.unet = None
        self.p_uses_cfg      = kwargs.get("p_uses_cfg", 0)
        # self.cfg_scale will be randomly sampled from cfg_scale_range.
        self.cfg_scale_range = kwargs.get("cfg_scale_range", [1.3, 2])
        # Initialize cfg_scale to 1. It will be randomly sampled during forward pass.
        self.cfg_scale       = 1
        if self.p_uses_cfg > 0:
            print(f"Using CFG with probability {self.p_uses_cfg} and scale range {self.cfg_scale_range}.")
        else:
            print(f"Never using CFG.")

    # Passing in ddpm_model to use its q_sample and predict_start_from_noise methods.
    # We don't implement the two functions here, because they involve a few tensors 
    # to be initialized, which will unnecessarily complicate the code.
    # noise: the initial noise for the first iteration.
    # t: the initial t. We will sample additional (num_denoising_steps - 1) smaller t.
    # same_t_noise_across_instances: when sampling t and noise, use the same t and noise for all instances.
    def forward(self, ddpm_model, x_start, noise, t, teacher_context, negative_context=None,
                num_denoising_steps=1, same_t_noise_across_instances=False,
                global_t_lb=0, global_t_ub=1000):
        assert num_denoising_steps <= 10

        if self.p_uses_cfg > 0:
            self.uses_cfg = np.random.rand() < self.p_uses_cfg
            if self.uses_cfg:
                # Randomly sample a cfg_scale from cfg_scale_range.
                self.cfg_scale = np.random.uniform(*self.cfg_scale_range)
                if self.cfg_scale == 1:
                    self.uses_cfg = False

            if self.uses_cfg:
                print(f"Teacher samples CFG scale {self.cfg_scale:.1f}.")
                if negative_context is not None:
                    negative_context = negative_context[:1].repeat(x_start.shape[0], 1, 1)

                # if negative_context is None, then teacher_context is a combination of
                # (one or multiple if unet_ensemble) pos_context and neg_context.
                # If negative_context is not None, then teacher_context is only pos_context.
            else:
                self.cfg_scale = 1
                print("Teacher does not use CFG.")

                # If negative_context is None, then teacher_context is a combination of 
                # (one or multiple if unet_ensemble) pos_context and neg_context.
                # Since not uses_cfg, we only need pos_context.
                # If negative_context is not None, then teacher_context is only pos_context.
                if negative_context is None:
                    teacher_context = self.extract_pos_context(teacher_context, x_start.shape[0])
        else:
            # p_uses_cfg = 0. Never use CFG. 
            self.uses_cfg = False
            # In this case, the student only passes pos_context to the teacher,
            # so no need to split teacher_context into pos_context and neg_context.
            # self.cfg_scale will be accessed by the student,
            # so we need to make sure it is always set correctly, 
            # in case someday we want to switch from CFG to non-CFG during runtime.
            self.cfg_scale = 1

        is_context_doubled = 2 if (self.uses_cfg and negative_context is None) else 1
        if self.name == 'unet_ensemble':
            # teacher_context is a list of teacher contexts.
            for teacher_context_i in teacher_context:
                if teacher_context_i.shape[0] != x_start.shape[0] * is_context_doubled:
                    breakpoint()
        else:
            if teacher_context.shape[0] != x_start.shape[0] * is_context_doubled:
                breakpoint()
        
        if same_t_noise_across_instances:
            # If same_t_noise_across_instances, we use the same t and noise for all instances.
            t = t[0].repeat(x_start.shape[0])
            noise = noise[:1].repeat(x_start.shape[0], 1, 1, 1)

        # Initially, x_starts only contains the original x_start.
        x_starts    = [ x_start ]
        noises      = [ noise ]
        ts          = [ t ]
        noise_preds = []

        with torch.autocast(device_type='cuda', dtype=torch.float16):
            for i in range(num_denoising_steps):
                x_start = x_starts[i]
                t       = ts[i]
                noise   = noises[i]
                # sqrt_alphas_cumprod[t] * x_start + sqrt_one_minus_alphas_cumprod[t] * noise
                x_noisy = ddpm_model.q_sample(x_start, t, noise)
                
                if self.uses_cfg and self.cfg_scale > 1 and negative_context is None:
                    x_noisy2 = x_noisy.repeat(2, 1, 1, 1)
                    t2       = t.repeat(2)
                else:
                    x_noisy2 = x_noisy
                    t2       = t

                # If do_arc2face_distill, then pos_context is [BS=6, 21, 768].
                noise_pred = self.unet(sample=x_noisy2, timestep=t2, encoder_hidden_states=teacher_context,
                                       return_dict=False)[0]
                if self.uses_cfg and self.cfg_scale > 1:
                    if negative_context is None:
                        pos_noise_pred, neg_noise_pred = torch.chunk(noise_pred, 2, dim=0)
                    else:
                        # If negative_context is not None, then teacher_context is only pos_context.
                        pos_noise_pred = noise_pred
                        with torch.no_grad():
                            if self.name == 'unet_ensemble':
                                neg_noise_pred = self.unet.unets[0](sample=x_noisy, timestep=t, 
                                                                    encoder_hidden_states=negative_context, return_dict=False)[0]
                            else:
                                neg_noise_pred = self.unet(sample=x_noisy, timestep=t, 
                                                           encoder_hidden_states=negative_context, return_dict=False)[0]
                                
                    noise_pred = pos_noise_pred * self.cfg_scale - neg_noise_pred * (self.cfg_scale - 1)

                noise_preds.append(noise_pred)
                # sqrt_recip_alphas_cumprod[t] * x_t - sqrt_recipm1_alphas_cumprod[t] * noise
                pred_x0 = ddpm_model.predict_start_from_noise(x_noisy, t, noise_pred)                
                # The predicted x0 is used as the x_start for the next denoising step.
                x_starts.append(pred_x0)

                # Sample an earlier timestep for the next denoising step.
                if i < num_denoising_steps - 1:
                    # NOTE: rand_like() samples from U(0, 1), not like randn_like().
                    relative_ts = torch.rand_like(t.float())
                    # Make sure at the middle step (i = sqrt(num_denoising_steps - 1), the timestep 
                    # is between 50% and 70% of the current timestep. So if num_denoising_steps = 5,
                    # we take timesteps within [0.5^0.66, 0.7^0.66] = [0.63, 0.79] of the current timestep.
                    # If num_denoising_steps = 4, we take timesteps within [0.5^0.72, 0.7^0.72] = [0.61, 0.77] 
                    # of the current timestep.
                    t_lb = t * np.power(0.5, np.power(num_denoising_steps - 1, -0.3))
                    t_ub = t * np.power(0.7, np.power(num_denoising_steps - 1, -0.3))
                    t_lb = torch.clamp(t_lb, min=global_t_lb)
                    t_ub = torch.clamp(t_ub, max=global_t_ub)
                    earlier_timesteps = (t_ub - t_lb) * relative_ts + t_lb
                    earlier_timesteps = earlier_timesteps.long()
                    noise = torch.randn_like(pred_x0)

                    if same_t_noise_across_instances:
                        # If same_t_noise_across_instances, we use the same earlier_timesteps and noise for all instances.
                        earlier_timesteps = earlier_timesteps[0].repeat(x_start.shape[0])
                        noise = noise[:1].repeat(x_start.shape[0], 1, 1, 1)

                    # earlier_timesteps = ts[i+1] < ts[i].
                    ts.append(earlier_timesteps)
                    noises.append(noise)

        return noise_preds, x_starts, noises, ts
        
    def extract_pos_context(self, teacher_context, BS):
        # If p_uses_cfg > 0, we always pass both pos_context and neg_context to the teacher.
        # But the neg_context is only used when self.uses_cfg is True and cfg_scale > 1.
        # So we manually split the teacher_context into pos_context and neg_context, and only keep pos_context.
        if self.name == 'unet_ensemble':
            teacher_pos_contexts = []
            # teacher_context is a list of teacher contexts.
            for teacher_context_i in teacher_context:
                pos_context, neg_context = torch.chunk(teacher_context_i, 2, dim=0)
                if pos_context.shape[0] != BS:
                    breakpoint()             
                teacher_pos_contexts.append(pos_context)
            teacher_context = teacher_pos_contexts       
        else:
            pos_context, neg_context = torch.chunk(teacher_context, 2, dim=0)
            if pos_context.shape[0] != BS:
                breakpoint()
            teacher_context = pos_context

        return teacher_context

class Arc2FaceTeacher(UNetTeacher):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.name = "arc2face"
        self.unet = UNet2DConditionModel.from_pretrained(
                        #"runwayml/stable-diffusion-v1-5", subfolder="unet"
                        'models/arc2face', subfolder="arc2face", torch_dtype=torch.float16
                    )
        # Disable CFG. Even if p_uses_cfg > 0, the randomly drawn cfg_scale is still 1,
        # so the CFG is effectively disabled.       
        self.cfg_scale_range = [1, 1]

class UNetEnsembleTeacher(UNetTeacher):
    # unet_weights_in_ensemble are not model weights, but scalar weights for individual unets.
    def __init__(self, unets, unet_types, extra_unet_dirpaths, unet_weights_in_ensemble=None, device='cuda', **kwargs):
        super().__init__(**kwargs)
        self.name = "unet_ensemble"
        self.unet = UNetEnsemble(unets, unet_types, extra_unet_dirpaths, unet_weights_in_ensemble, device)

class ConsistentIDTeacher(UNetTeacher):
    def __init__(self, base_model_path="models/sd15-dste8-vae.safetensors", **kwargs):
        super().__init__(**kwargs)
        self.name = "consistentID"
        ### Load base model
        # In contrast to Arc2FaceTeacher or UNetEnsembleTeacher, ConsistentIDPipeline is not a torch.nn.Module.
        # We couldn't initialize the ConsistentIDPipeline to CPU first and wait it to be automatically moved to GPU.
        # Instead, we have to initialize it to GPU directly.
        # Release VAE and text_encoder to save memory. UNet is needed for denoising 
        # (the unet is implemented in diffusers in fp16, so probably faster than the LDM unet).
        self.unet = create_consistentid_pipeline(base_model_path, unet_only=True)

# We use the default cfg_scale_range=[1.3, 2] for SimpleUNetTeacher.
# Note p_uses_cfg=0.5 will also be passed in in kwargs.
class SimpleUNetTeacher(UNetTeacher):
    def __init__(self, unet_dirpath='models/ensemble/sd15-unet', 
                 torch_dtype=torch.float16, **kwargs):
        super().__init__(**kwargs)
        self.name = "simple_unet"
        self.unet = UNet2DConditionModel.from_pretrained(
                        unet_dirpath, torch_dtype=torch_dtype
                    )