adaface-neurips's picture
Upload folder using huggingface_hub
76ccb95 verified
import os
import imageio
import numpy as np
from typing import Union
import cv2
import torch
import torchvision
import torch.distributed as dist
from safetensors import safe_open
from tqdm import tqdm
from einops import rearrange
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora
def zero_rank_print(s):
if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
from typing import List
import PIL
def export_to_video(
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
) -> str:
# if output_video_path is None:
# output_video_path = tempfile.NamedTemporaryFile(suffix=".webm").name
if isinstance(video_frames[0], PIL.Image.Image):
video_frames = [np.array(frame) for frame in video_frames]
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# fourcc = cv2.VideoWriter_fourcc(*'VP90')
h, w, c = video_frames[0].shape
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))
for i in range(len(video_frames)):
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
video_writer.write(img)
return output_video_path
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=9):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
# export_to_video(outputs, output_video_path=path, fps=fps)
imageio.mimsave(path, outputs, fps=fps)
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
timestep, next_timestep = min(
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
def load_weights(
animation_pipeline,
# motion module
motion_module_path = "",
motion_module_lora_configs = [],
# domain adapter
adapter_lora_path = "",
adapter_lora_scale = 1.0,
# image layers
dreambooth_model_path = "",
lora_model_path = "",
lora_alpha = 0.8,
):
# motion module
unet_state_dict = {}
if motion_module_path != "":
print(f"load motion module from {motion_module_path}")
motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict
unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name})
unet_state_dict.pop("animatediff_config", "")
missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
print("motion_module missing:",len(missing))
print("motion_module unexpe:",len(unexpected))
assert len(unexpected) == 0
del unet_state_dict
# base model
# if dreambooth_model_path != "":
# print(f"load dreambooth model from {dreambooth_model_path}")
# # if dreambooth_model_path.endswith(".safetensors"):
# # dreambooth_state_dict = {}
# # with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
# # for key in f.keys():
# # dreambooth_state_dict[key] = f.get_tensor(key)
# # elif dreambooth_model_path.endswith(".ckpt"):
# # dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
# # # 1. vae
# # converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
# # animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
# # # 2. unet
# # converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
# # animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
# # # 3. text_model
# # animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
# # del dreambooth_state_dict
# dreambooth_state_dict = {}
# with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
# for key in f.keys():
# dreambooth_state_dict[key] = f.get_tensor(key)
# converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
# # print(vae)
# #vae ->to_q,to_k,to_v
# # print(converted_vae_checkpoint)
# convert_vae_keys = list(converted_vae_checkpoint.keys())
# for key in convert_vae_keys:
# if "encoder.mid_block.attentions" in key or "decoder.mid_block.attentions" in key:
# new_key = None
# if "key" in key:
# new_key = key.replace("key","to_k")
# elif "query" in key:
# new_key = key.replace("query","to_q")
# elif "value" in key:
# new_key = key.replace("value","to_v")
# elif "proj_attn" in key:
# new_key = key.replace("proj_attn","to_out.0")
# if new_key:
# converted_vae_checkpoint[new_key] = converted_vae_checkpoint.pop(key)
# animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
# converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
# animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
# animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
# del dreambooth_state_dict
# lora layers
if lora_model_path != "":
print(f"load lora model from {lora_model_path}")
assert lora_model_path.endswith(".safetensors")
lora_state_dict = {}
with safe_open(lora_model_path, framework="pt", device="cpu") as f:
for key in f.keys():
lora_state_dict[key] = f.get_tensor(key)
animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
del lora_state_dict
# domain adapter lora
if adapter_lora_path != "":
print(f"load domain lora from {adapter_lora_path}")
domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu")
domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict
domain_lora_state_dict.pop("animatediff_config", "")
animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale)
# motion module lora
for motion_module_lora_config in motion_module_lora_configs:
path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
print(f"load motion LoRA from {path}")
motion_lora_state_dict = torch.load(path, map_location="cpu")
motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict
motion_lora_state_dict.pop("animatediff_config", "")
animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha)
return animation_pipeline