File size: 26,019 Bytes
40ca865
 
 
 
 
 
 
936cd75
 
40ca865
 
936cd75
 
 
 
 
 
 
 
 
 
 
6be3e80
 
 
40ca865
 
 
 
936cd75
 
40ca865
936cd75
40ca865
 
 
 
936cd75
40ca865
936cd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ca865
 
 
 
936cd75
 
 
a9ea043
936cd75
40ca865
 
 
936cd75
40ca865
 
 
 
 
 
 
936cd75
 
 
 
 
 
 
 
 
 
 
 
 
 
40ca865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
936cd75
 
40ca865
 
936cd75
 
 
 
40ca865
a056202
a09d93b
a056202
 
 
 
 
 
 
 
 
40ca865
a056202
 
 
40ca865
 
 
936cd75
 
 
40ca865
 
 
 
 
 
 
 
 
 
 
 
 
 
a056202
936cd75
40ca865
a056202
40ca865
 
936cd75
 
 
 
40ca865
936cd75
 
 
 
 
 
 
40ca865
936cd75
40ca865
 
936cd75
40ca865
936cd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ca865
936cd75
40ca865
936cd75
40ca865
 
 
 
936cd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ca865
 
 
 
 
 
a09d93b
40ca865
 
 
a09d93b
40ca865
 
936cd75
a09d93b
40ca865
 
 
936cd75
40ca865
 
 
 
 
 
 
 
 
 
936cd75
40ca865
936cd75
40ca865
 
936cd75
 
 
 
 
 
 
40ca865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ea043
936cd75
 
40ca865
936cd75
 
 
 
 
 
 
 
 
a9ea043
936cd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ca865
936cd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ca865
 
 
 
 
936cd75
 
 
 
 
 
40ca865
 
 
 
 
936cd75
 
40ca865
 
 
936cd75
 
 
 
 
 
 
40ca865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
936cd75
40ca865
 
 
 
 
 
 
 
 
 
936cd75
 
 
 
 
40ca865
 
936cd75
40ca865
 
936cd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ca865
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import sys
sys.path.append('./')

from adaface.adaface_wrapper import AdaFaceWrapper
import torch
import numpy as np
import random
import os, re
import time
import gradio as gr
import spaces

def str2bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")

def is_running_on_spaces():
    return os.getenv("SPACE_ID") is not None

import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--adaface_encoder_types", type=str, nargs="+", default=["consistentID", "arc2face"],
                    choices=["arc2face", "consistentID"], help="Type(s) of the ID2Ada prompt encoders")
parser.add_argument('--adaface_ckpt_path', type=str, default='models/adaface/VGGface2_HQ_masks2025-03-06T03-31-21_zero3-ada-1000.pt',
                    help="Path to the checkpoint of the ID2Ada prompt encoders")
# If adaface_encoder_cfg_scales is not specified, the weights will be set to 6.0 (consistentID) and 1.0 (arc2face).
parser.add_argument('--adaface_encoder_cfg_scales', type=float, nargs="+", default=[6.0, 1.0],    
                    help="Scales for the ID2Ada prompt encoders")
parser.add_argument("--enabled_encoders", type=str, nargs="+", default=None,
                    choices=["arc2face", "consistentID"], 
                    help="List of enabled encoders (among the list of adaface_encoder_types). Default: None (all enabled)")
parser.add_argument('--model_style_type', type=str, default='photorealistic',
                    choices=["realistic", "anime", "photorealistic"], help="Type of the base model")
parser.add_argument("--guidance_scale", type=float, default=5.0,
                    help="The guidance scale for the diffusion model. Default: 5.0")
parser.add_argument("--unet_uses_attn_lora", type=str2bool, nargs="?", const=True, default=False,
                    help="Whether to use LoRA in the Diffusers UNet model")
# --attn_lora_layer_names and --q_lora_updates_query are only effective
# when --unet_uses_attn_lora is set to True.
parser.add_argument("--attn_lora_layer_names", type=str, nargs="*", default=['q', 'k', 'v', 'out'],
                    choices=['q', 'k', 'v', 'out'], help="Names of the cross-attn components to apply LoRA on")
parser.add_argument("--q_lora_updates_query", type=str2bool, nargs="?", const=True, default=False,
                    help="Whether the q LoRA updates the query in the Diffusers UNet model. "
                         "If False, the q lora only updates query2.")
parser.add_argument("--show_disable_adaface_checkbox", type=str2bool, nargs="?", const=True, default=False,
                    help="Whether to show the checkbox for disabling AdaFace")
parser.add_argument('--extra_save_dir', type=str, default=None, help="Directory to save the generated images")
parser.add_argument('--test_ui_only', type=str2bool, nargs="?", const=True, default=False,
                    help="Only test the UI layout, and skip loadding the adaface model")
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--ip', type=str, default="0.0.0.0")
args = parser.parse_args()

from huggingface_hub import snapshot_download
large_files = ["models/*", "models/**/*"]
snapshot_download(repo_id="adaface-neurips/adaface-models", repo_type="model", allow_patterns=large_files, local_dir=".")
os.makedirs("/tmp/gradio", exist_ok=True)

model_style_type2base_model_path = {
    "realistic": "models/rv51/realisticVisionV51_v51VAE_dste8.safetensors",
    "anime": "models/aingdiffusion/aingdiffusion_v170_ar.safetensors",
    "photorealistic": "models/sar/sar.safetensors", # LDM format. Needs to be converted.
}
base_model_path = model_style_type2base_model_path[args.model_style_type]

# global variable
MAX_SEED = np.iinfo(np.int32).max

global adaface
adaface = None

if not args.test_ui_only:
    adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
                             adaface_encoder_types=args.adaface_encoder_types, 
                             adaface_ckpt_paths=args.adaface_ckpt_path, 
                             adaface_encoder_cfg_scales=args.adaface_encoder_cfg_scales,
                             enabled_encoders=args.enabled_encoders,
                             unet_types=None, extra_unet_dirpaths=None, unet_weights_in_ensemble=None, 
                             unet_uses_attn_lora=args.unet_uses_attn_lora,
                             attn_lora_layer_names=args.attn_lora_layer_names,
                             shrink_cross_attn=False,
                             q_lora_updates_query=args.q_lora_updates_query,
                             device='cpu')

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def swap_to_gallery(images):
    # Update uploaded_files_gallery, show files, hide clear_button_column
    # Or:
    # Update uploaded_init_img_gallery, show init_img_files, hide init_clear_button_column
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(value=images, visible=False)

def remove_back_to_files():
    # Hide uploaded_files_gallery,    show clear_button_column,      hide files,           reset init_img_selected_idx
    # Or:
    # Hide uploaded_init_img_gallery, hide init_clear_button_column, show init_img_files,  reset init_img_selected_idx
    return gr.update(visible=False), gr.update(visible=False), gr.update(value=None, visible=True), \
           gr.update(value=""), gr.update(value="(none)")

@spaces.GPU
def generate_image(image_paths, image_paths2, guidance_scale, perturb_std,
                   num_images, prompt, negative_prompt, gender, highlight_face, 
                   ablate_prompt_embed_type, nonmix_prompt_emb_weight,
                   composition_level, seed, disable_adaface, subj_name_sig, progress=gr.Progress(track_tqdm=True)):

    global adaface, args

    if is_running_on_spaces():
        device = 'cuda:0'
    else:
        if args.gpu is None:
            device = "cuda" 
        else:
            device = f"cuda:{args.gpu}"

    print(f"Device: {device}")

    adaface.to(device)
    args.device = device
    
    if image_paths is None or len(image_paths) == 0:
        raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
    
    if image_paths2 is not None and len(image_paths2) > 0:
        image_paths = image_paths + image_paths2

    if prompt is None:
        prompt = ""

    adaface_subj_embs = \
        adaface.prepare_adaface_embeddings(image_paths=image_paths, face_id_embs=None, 
                                           avg_at_stage='id_emb',
                                           perturb_at_stage='img_prompt_emb',
                                           perturb_std=perturb_std, update_text_encoder=True)
    
    if adaface_subj_embs is None:
        raise gr.Error(f"Failed to detect any faces! Please try with other images")

    # Sometimes the pipeline is on CPU, although we've put it on CUDA (due to some offloading mechanism).
    # Therefore we set the generator to the correct device.
    generator = torch.Generator(device=args.device).manual_seed(seed)
    print(f"Manual seed: {seed}.")
    # Generate two images each time for the user to select from.
    noise = torch.randn(num_images, 3, 512, 512, device=args.device, generator=generator)
    #print(noise.abs().sum())
    # samples: A list of PIL Image instances.
    if highlight_face: 
        if "portrait" not in prompt:
            prompt = "face portrait, " + prompt
        else:
            prompt = prompt.replace("portrait", "face portrait")
    if composition_level >= 2:
        if "full body" not in prompt:
            prompt = prompt + ", full body view"

    if gender != "(none)":
        if "portrait" in prompt:
            prompt = prompt.replace("portrait, ", f"portrait, {gender} ")
        else:
            prompt = gender + ", " + prompt

    generator = torch.Generator(device=adaface.pipeline._execution_device).manual_seed(seed)
    samples = adaface(noise, prompt, negative_prompt=negative_prompt, 
                      guidance_scale=guidance_scale, 
                      out_image_count=num_images, generator=generator, 
                      repeat_prompt_for_each_encoder=(composition_level >= 1),
                      ablate_prompt_no_placeholders=disable_adaface,
                      ablate_prompt_embed_type=ablate_prompt_embed_type,
                      nonmix_prompt_emb_weight=nonmix_prompt_emb_weight,
                      verbose=True)

    session_signature = ",".join(image_paths + [prompt, str(seed)])
    temp_folder = os.path.join("/tmp/gradio", f"{hash(session_signature)}")
    os.makedirs(temp_folder, exist_ok=True)

    saved_image_paths = []
    if "models/adaface/" in args.adaface_ckpt_path:
        # The model is loaded from within the project.
        # models/adaface/VGGface2_HQ_masks2024-10-14T16-09-24_zero3-ada-3500.pt
        matches = re.search(r"models/adaface/\w+\d{4}-(\d{2})-(\d{2})T(\d{2})-\d{2}-\d{2}_zero3-ada-(\d+).pt", args.adaface_ckpt_path)
    else:
        # The model is loaded from the adaprompt folder.
        # adaface_ckpt_path = "VGGface2_HQ_masks2024-11-28T13-13-20_zero3-ada/checkpoints/embeddings_gs-2000.pt"
        matches = re.search(r"\d{4}-(\d{2})-(\d{2})T(\d{2})-\d{2}-\d{2}_zero3-ada/checkpoints/embeddings_gs-(\d+).pt", args.adaface_ckpt_path)

    # Extract the checkpoint signature as 112813-2000
    ckpt_sig = f"{matches.group(1)}{matches.group(2)}{matches.group(3)}-{matches.group(4)}"

    prompt_keywords     = ['armor', 'beach', 'chef', 'dancing', 'iron man', 'jedi', 
                           'street', 'guitar', 'reading', 'running', 'superman', 'new year', 'mars']
    keywords_reduction  = { 'iron man': 'ironman', 'dancing': 'dance', 
                            'running':  'run',     'reading': 'read', 'new year': 'newyear' }

    prompt_sig = None
    for keyword in prompt_keywords:
        if keyword in prompt.lower():
            prompt_sig = keywords_reduction.get(keyword, keyword)
            break

    if prompt_sig is None:
        prompt_parts = prompt.lower().split(",")
        # Remove the view/shot parts (full body view, long shot, etc.) from the prompt.
        prompt_parts = [ part for part in prompt_parts if not re.search(r"\W(view|shot)(\W|$)", part) ]
        if len(prompt_parts) > 0:
            # Use the last word of the prompt as the signature.
            prompt_sig = prompt_parts[-1].split()[-1]
        else:
            prompt_sig = "person"

    if len(prompt_sig) > 0:
        prompt_sig = "-" + prompt_sig

    extra_save_dir = args.extra_save_dir
    if extra_save_dir is not None:
        os.makedirs(extra_save_dir, exist_ok=True)

    for i, sample in enumerate(samples):
        filename = f"adaface{ckpt_sig}{prompt_sig}-{i+1}.png"
        if len(subj_name_sig) > 0:
            filename = f"{subj_name_sig.lower()}-{filename}"
        filepath = os.path.join(temp_folder, filename)
        # Save the image
        sample.save(filepath)  # Adjust to your image saving method
        saved_image_paths.append(filepath)

        if extra_save_dir is not None:
            extra_filepath = os.path.join(extra_save_dir, filename)
            sample.save(extra_filepath)
            print(extra_filepath)
    
    # Solution suggested by o1 to force the client browser to reload images 
    # when we change guidance scales only.
    saved_image_paths = [f"{url}?t={int(time.time())}" for url in saved_image_paths]

    return saved_image_paths

def check_prompt_and_model_type(prompt, model_style_type, adaface_encoder_cfg_scale1):
    global adaface

    model_style_type = model_style_type.lower()
    # If the base model type is changed, reload the model.
    if model_style_type != args.model_style_type or adaface_encoder_cfg_scale1 != args.adaface_encoder_cfg_scales[0]:
        if model_style_type != args.model_style_type:
            # Update base model type.
            args.model_style_type = model_style_type
            print(f"Switching to the base model type: {model_style_type}.")

            adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=model_style_type2base_model_path[model_style_type],
                                    adaface_encoder_types=args.adaface_encoder_types,
                                    adaface_ckpt_paths=args.adaface_ckpt_path,                          
                                    adaface_encoder_cfg_scales=args.adaface_encoder_cfg_scales,
                                    enabled_encoders=args.enabled_encoders,
                                    unet_types=None, extra_unet_dirpaths=None, unet_weights_in_ensemble=None, 
                                    unet_uses_attn_lora=args.unet_uses_attn_lora,
                                    attn_lora_layer_names=args.attn_lora_layer_names,
                                    shrink_cross_attn=False,
                                    q_lora_updates_query=args.q_lora_updates_query,
                                    device='cpu')

    if adaface_encoder_cfg_scale1 != args.adaface_encoder_cfg_scales[0]:
        args.adaface_encoder_cfg_scales[0] = adaface_encoder_cfg_scale1
        adaface.set_adaface_encoder_cfg_scales(args.adaface_encoder_cfg_scales)
        print(f"Updating the scale for consistentID encoder to {adaface_encoder_cfg_scale1}.")

    if not prompt:
        raise gr.Error("Prompt cannot be blank")

### Description
title = r"""
<h1>AdaFace: A Versatile Text-space Face Encoder for Face Synthesis and Processing</h1>
"""

description = r"""
<b>Official demo</b> for our working paper <b>AdaFace: A Versatile Text-space Face Encoder for Face Synthesis and Processing</b>.<br>

❗️**What's New**❗️
- Support switching between three model styles: **Photorealistic**, **Realistic** and **Anime**.
- If you just changed the model style, the first image/video generation will take <b>extra 20~30 seconds</b> for loading the new model weight.

❗️**Tips**❗️
1. Upload one or more images of a person. If multiple faces are detected, we use the largest one. 
2. Check "Highlight face" to highlight fine facial features.
4. AdaFace Text-to-Video: <a href="https://huggingface.co/spaces/adaface-neurips/adaface-animate" style="display: inline-flex; align-items: center;">
  AdaFace-Animate 
  <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow" alt="Hugging Face Spaces" style="margin-left: 5px;">
</a>

**TODO:**
- ControlNet integration.
"""

css = '''
.gradio-container {width: 95% !important}
.custom-gallery { 
    height: 800px !important; 
    width: 100%; 
    margin: 10px auto; 
    padding: 0px; 
    overflow-y: auto !important; 
}
.tight-row {
    gap: 0 !important;        /* removes the horizontal gap between columns */
    margin: 0 !important;     /* remove any extra margin if needed */
    padding: 0 !important;    /* remove any extra padding if needed */
}
'''
with gr.Blocks(css=css, theme=gr.themes.Origin()) as demo:

    # description
    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            
            # upload face image
            # img_file = gr.Image(label="Upload a photo with a face", type="filepath")
            img_files = gr.File(
                        label="Drag / Select 1 or more photos of a person's face",
                        file_types=["image"],
                        file_count="multiple"
                    )
            img_files.GRADIO_CACHE = "/tmp/gradio"
            # When files are uploaded, show the images in the gallery and hide the file uploader.
            uploaded_files_gallery  = gr.Gallery(label="Subject images", visible=False, columns=3, rows=1, height=300)
            with gr.Column(visible=False) as clear_button_column:
                remove_and_reupload = gr.ClearButton(value="Remove and upload subject images", 
                                                     components=img_files, size="sm")

            with gr.Accordion("Second Subject (Optional)", open=False):
                img_files2 = gr.File(
                            label="Drag / Select 1 or more photos of second subject's face (optional)",
                            file_types=["image"],
                            file_count="multiple"
                        )
                img_files2.GRADIO_CACHE = "/tmp/gradio"
                uploaded_files_gallery2 = gr.Gallery(label="2nd Subject images (optional)", visible=False, columns=3, rows=1, height=300)
                with gr.Column(visible=False) as clear_button_column2:
                    remove_and_reupload2 = gr.ClearButton(value="Remove and upload 2nd Subject images", 
                                                        components=img_files2, size="sm")

            with gr.Row(elem_classes="tight-row"):
                with gr.Column(scale=1, min_width=100):
                    gender = gr.Dropdown(label="Gender", value="(none)",
                                        info="Gender prefix. Select only when the model errs.",
                                        container=False,
                                        choices=[ "(none)", "person", "man", "woman", "girl", "boy" ])

                with gr.Column(scale=100):                
                    prompt = gr.Dropdown(label="Prompt",
                            info="Try something like 'walking on the beach'. If the face is not in focus, try checking 'Highlight face'.",
                            value="portrait, highlighted hair, futuristic silver armor suit, confident stance, living room, smiling, head tilted, perfect smooth skin",
                            allow_custom_value=True,
                            choices=[
                                    "portrait, highlighted hair, futuristic silver armor suit, confident stance, living room, smiling, head tilted, perfect smooth skin",
                                    "portrait, walking on the beach, sunset, orange sky, front view",
                                    "portrait, in a white apron and chef hat, garnishing a gourmet dish",
                                    "portrait, waving hands, dancing pose among folks in a park",
                                    "portrait, in iron man costume, the sky ablaze with hues of orange and purple",
                                    "portrait, jedi wielding a lightsaber, star wars",
                                    "portrait, night view of tokyo street, neon light",
                                    "portrait, playing guitar on a boat, ocean waves",
                                    "portrait, with a passion for reading, curled up with a book in a cozy nook near a window, front view",
                                    "portrait, celebrating new year, fireworks",
                                    "portrait, running pose in a park",
                                    "portrait, in space suit, space helmet, walking on mars",
                                    "portrait, in superman costume, the sky ablaze with hues of orange and purple",
                                    "in a wheelchair",
                                    "on a horse"
                            ])
            
            highlight_face = gr.Checkbox(label="Highlight face", value=False, 
                                         info="Enhance the facial features by prepending 'face portrait' to the prompt")
            composition_level = \
                gr.Slider(label="Composition Level", visible=True,
                          info="The degree of overall composition, 0~2. Challenging prompts like 'In a wheelchair' and 'on a horse' need level 2",
                          minimum=0, maximum=2, step=1, value=0)

            ablate_prompt_embed_type = gr.Dropdown(label="Ablate prompt embeddings type",
                                                   choices=["ada", "ada-nonmix", "img"], value="ada", visible=False,
                                                   info="Use this type of prompt embeddings for ablation study")
            
            nonmix_prompt_emb_weight = gr.Slider(label="Weight of ada-nonmix ID embeddings",
                                                 minimum=0.0, maximum=0.5, step=0.1, value=0,
                                                 info="Weight of ada-nonmix ID embeddings in the prompt embeddings",
                                                 visible=False)
                                        

            subj_name_sig = gr.Textbox(
                label="Nickname of Subject (optional; used to name saved images)", 
                value="",
            )
            subj_name_sig2 = gr.Textbox(
                label="Nickname of 2nd Subject (optional; used to name saved images)", 
                value="",
                visible=False,
            )

            submit = gr.Button("Submit", variant="primary")

            negative_prompt = gr.Textbox(
                label="Negative Prompt", 
                value="sagging face, sagging cheeks, wrinkles, flaws in the eyes, flaws in the face, lowres, "
                      "non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, "
                      "mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, "
                      "deformed eyeballs, cross-eyed, extra legs, extra arms, blurry, mutation, duplicate, "
                      "out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, "
                      "nude, naked, nsfw, topless, bare breasts",
            )

            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=1.0,
                maximum=8.0,
                step=0.5,
                value=args.guidance_scale,
            )

            adaface_encoder_cfg_scale1 = gr.Slider(
                label="Scale for consistentID encoder",
                minimum=1.0,
                maximum=12.0,
                step=1.0,
                value=args.adaface_encoder_cfg_scales[0],
                visible=False,
            )

            model_style_type = gr.Dropdown(
                label="Base Model Style Type",
                info="Switching the base model type will take 10~20 seconds to reload the model",
                value=args.model_style_type.capitalize(),
                choices=["Realistic", "Anime", "Photorealistic"],
                allow_custom_value=False,
                filterable=False,
            )

            perturb_std = gr.Slider(
                label="Std of noise added to input (may help stablize face embeddings)",
                minimum=0.0,
                maximum=0.05,
                step=0.025,
                value=0.0,
                visible=False,
            )
            num_images = gr.Slider(
                label="Number of output images",
                minimum=1,
                maximum=8,
                step=1,
                value=4,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed  = gr.Checkbox(label="Randomize seed", value=True, 
                                          info="Uncheck for reproducible results")
            disable_adaface = gr.Checkbox(label="Disable AdaFace", value=False, 
                                          info="Disable AdaFace for ablation. If checked, the results are no longer personalized.",
                                          visible=args.show_disable_adaface_checkbox)

        with gr.Column():
            out_gallery = gr.Gallery(label="Generated Images", interactive=False, columns=2, rows=4, height=800,
                                     elem_classes="custom-gallery")

        img_files.upload(fn=swap_to_gallery,  inputs=img_files,  outputs=[uploaded_files_gallery,  clear_button_column,  img_files])
        img_files2.upload(fn=swap_to_gallery, inputs=img_files2, outputs=[uploaded_files_gallery2, clear_button_column2, img_files2])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery, clear_button_column, 
                                                                    img_files, subj_name_sig, gender])
        remove_and_reupload2.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery2, clear_button_column2, 
                                                                    img_files2, subj_name_sig2, gender])

        check_prompt_and_model_type_call_dict = {
            'fn': check_prompt_and_model_type,
            'inputs': [prompt, model_style_type, adaface_encoder_cfg_scale1],
            'outputs': None
        }
        randomize_seed_fn_call_dict = {
            'fn': randomize_seed_fn,
            'inputs': [seed, randomize_seed],
            'outputs': seed
        }
        generate_image_call_dict = {
            'fn': generate_image,
            'inputs': [img_files, img_files2, guidance_scale, perturb_std, num_images, prompt, 
                       negative_prompt, gender, highlight_face, ablate_prompt_embed_type, 
                       nonmix_prompt_emb_weight, composition_level, seed, disable_adaface, subj_name_sig],
            'outputs': [out_gallery]
        }
        submit.click(**check_prompt_and_model_type_call_dict).success(**randomize_seed_fn_call_dict).then(**generate_image_call_dict)
        subj_name_sig.submit(**check_prompt_and_model_type_call_dict).success(**randomize_seed_fn_call_dict).then(**generate_image_call_dict)

demo.launch(share=True, server_name=args.ip, ssl_verify=False)