Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,019 Bytes
40ca865 936cd75 40ca865 936cd75 6be3e80 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 a9ea043 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 a056202 a09d93b a056202 40ca865 a056202 40ca865 936cd75 40ca865 a056202 936cd75 40ca865 a056202 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 a09d93b 40ca865 a09d93b 40ca865 936cd75 a09d93b 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 a9ea043 936cd75 40ca865 936cd75 a9ea043 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 936cd75 40ca865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import sys
sys.path.append('./')
from adaface.adaface_wrapper import AdaFaceWrapper
import torch
import numpy as np
import random
import os, re
import time
import gradio as gr
import spaces
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def is_running_on_spaces():
return os.getenv("SPACE_ID") is not None
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--adaface_encoder_types", type=str, nargs="+", default=["consistentID", "arc2face"],
choices=["arc2face", "consistentID"], help="Type(s) of the ID2Ada prompt encoders")
parser.add_argument('--adaface_ckpt_path', type=str, default='models/adaface/VGGface2_HQ_masks2025-03-06T03-31-21_zero3-ada-1000.pt',
help="Path to the checkpoint of the ID2Ada prompt encoders")
# If adaface_encoder_cfg_scales is not specified, the weights will be set to 6.0 (consistentID) and 1.0 (arc2face).
parser.add_argument('--adaface_encoder_cfg_scales', type=float, nargs="+", default=[6.0, 1.0],
help="Scales for the ID2Ada prompt encoders")
parser.add_argument("--enabled_encoders", type=str, nargs="+", default=None,
choices=["arc2face", "consistentID"],
help="List of enabled encoders (among the list of adaface_encoder_types). Default: None (all enabled)")
parser.add_argument('--model_style_type', type=str, default='photorealistic',
choices=["realistic", "anime", "photorealistic"], help="Type of the base model")
parser.add_argument("--guidance_scale", type=float, default=5.0,
help="The guidance scale for the diffusion model. Default: 5.0")
parser.add_argument("--unet_uses_attn_lora", type=str2bool, nargs="?", const=True, default=False,
help="Whether to use LoRA in the Diffusers UNet model")
# --attn_lora_layer_names and --q_lora_updates_query are only effective
# when --unet_uses_attn_lora is set to True.
parser.add_argument("--attn_lora_layer_names", type=str, nargs="*", default=['q', 'k', 'v', 'out'],
choices=['q', 'k', 'v', 'out'], help="Names of the cross-attn components to apply LoRA on")
parser.add_argument("--q_lora_updates_query", type=str2bool, nargs="?", const=True, default=False,
help="Whether the q LoRA updates the query in the Diffusers UNet model. "
"If False, the q lora only updates query2.")
parser.add_argument("--show_disable_adaface_checkbox", type=str2bool, nargs="?", const=True, default=False,
help="Whether to show the checkbox for disabling AdaFace")
parser.add_argument('--extra_save_dir', type=str, default=None, help="Directory to save the generated images")
parser.add_argument('--test_ui_only', type=str2bool, nargs="?", const=True, default=False,
help="Only test the UI layout, and skip loadding the adaface model")
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--ip', type=str, default="0.0.0.0")
args = parser.parse_args()
from huggingface_hub import snapshot_download
large_files = ["models/*", "models/**/*"]
snapshot_download(repo_id="adaface-neurips/adaface-models", repo_type="model", allow_patterns=large_files, local_dir=".")
os.makedirs("/tmp/gradio", exist_ok=True)
model_style_type2base_model_path = {
"realistic": "models/rv51/realisticVisionV51_v51VAE_dste8.safetensors",
"anime": "models/aingdiffusion/aingdiffusion_v170_ar.safetensors",
"photorealistic": "models/sar/sar.safetensors", # LDM format. Needs to be converted.
}
base_model_path = model_style_type2base_model_path[args.model_style_type]
# global variable
MAX_SEED = np.iinfo(np.int32).max
global adaface
adaface = None
if not args.test_ui_only:
adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
adaface_encoder_types=args.adaface_encoder_types,
adaface_ckpt_paths=args.adaface_ckpt_path,
adaface_encoder_cfg_scales=args.adaface_encoder_cfg_scales,
enabled_encoders=args.enabled_encoders,
unet_types=None, extra_unet_dirpaths=None, unet_weights_in_ensemble=None,
unet_uses_attn_lora=args.unet_uses_attn_lora,
attn_lora_layer_names=args.attn_lora_layer_names,
shrink_cross_attn=False,
q_lora_updates_query=args.q_lora_updates_query,
device='cpu')
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def swap_to_gallery(images):
# Update uploaded_files_gallery, show files, hide clear_button_column
# Or:
# Update uploaded_init_img_gallery, show init_img_files, hide init_clear_button_column
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(value=images, visible=False)
def remove_back_to_files():
# Hide uploaded_files_gallery, show clear_button_column, hide files, reset init_img_selected_idx
# Or:
# Hide uploaded_init_img_gallery, hide init_clear_button_column, show init_img_files, reset init_img_selected_idx
return gr.update(visible=False), gr.update(visible=False), gr.update(value=None, visible=True), \
gr.update(value=""), gr.update(value="(none)")
@spaces.GPU
def generate_image(image_paths, image_paths2, guidance_scale, perturb_std,
num_images, prompt, negative_prompt, gender, highlight_face,
ablate_prompt_embed_type, nonmix_prompt_emb_weight,
composition_level, seed, disable_adaface, subj_name_sig, progress=gr.Progress(track_tqdm=True)):
global adaface, args
if is_running_on_spaces():
device = 'cuda:0'
else:
if args.gpu is None:
device = "cuda"
else:
device = f"cuda:{args.gpu}"
print(f"Device: {device}")
adaface.to(device)
args.device = device
if image_paths is None or len(image_paths) == 0:
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
if image_paths2 is not None and len(image_paths2) > 0:
image_paths = image_paths + image_paths2
if prompt is None:
prompt = ""
adaface_subj_embs = \
adaface.prepare_adaface_embeddings(image_paths=image_paths, face_id_embs=None,
avg_at_stage='id_emb',
perturb_at_stage='img_prompt_emb',
perturb_std=perturb_std, update_text_encoder=True)
if adaface_subj_embs is None:
raise gr.Error(f"Failed to detect any faces! Please try with other images")
# Sometimes the pipeline is on CPU, although we've put it on CUDA (due to some offloading mechanism).
# Therefore we set the generator to the correct device.
generator = torch.Generator(device=args.device).manual_seed(seed)
print(f"Manual seed: {seed}.")
# Generate two images each time for the user to select from.
noise = torch.randn(num_images, 3, 512, 512, device=args.device, generator=generator)
#print(noise.abs().sum())
# samples: A list of PIL Image instances.
if highlight_face:
if "portrait" not in prompt:
prompt = "face portrait, " + prompt
else:
prompt = prompt.replace("portrait", "face portrait")
if composition_level >= 2:
if "full body" not in prompt:
prompt = prompt + ", full body view"
if gender != "(none)":
if "portrait" in prompt:
prompt = prompt.replace("portrait, ", f"portrait, {gender} ")
else:
prompt = gender + ", " + prompt
generator = torch.Generator(device=adaface.pipeline._execution_device).manual_seed(seed)
samples = adaface(noise, prompt, negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
out_image_count=num_images, generator=generator,
repeat_prompt_for_each_encoder=(composition_level >= 1),
ablate_prompt_no_placeholders=disable_adaface,
ablate_prompt_embed_type=ablate_prompt_embed_type,
nonmix_prompt_emb_weight=nonmix_prompt_emb_weight,
verbose=True)
session_signature = ",".join(image_paths + [prompt, str(seed)])
temp_folder = os.path.join("/tmp/gradio", f"{hash(session_signature)}")
os.makedirs(temp_folder, exist_ok=True)
saved_image_paths = []
if "models/adaface/" in args.adaface_ckpt_path:
# The model is loaded from within the project.
# models/adaface/VGGface2_HQ_masks2024-10-14T16-09-24_zero3-ada-3500.pt
matches = re.search(r"models/adaface/\w+\d{4}-(\d{2})-(\d{2})T(\d{2})-\d{2}-\d{2}_zero3-ada-(\d+).pt", args.adaface_ckpt_path)
else:
# The model is loaded from the adaprompt folder.
# adaface_ckpt_path = "VGGface2_HQ_masks2024-11-28T13-13-20_zero3-ada/checkpoints/embeddings_gs-2000.pt"
matches = re.search(r"\d{4}-(\d{2})-(\d{2})T(\d{2})-\d{2}-\d{2}_zero3-ada/checkpoints/embeddings_gs-(\d+).pt", args.adaface_ckpt_path)
# Extract the checkpoint signature as 112813-2000
ckpt_sig = f"{matches.group(1)}{matches.group(2)}{matches.group(3)}-{matches.group(4)}"
prompt_keywords = ['armor', 'beach', 'chef', 'dancing', 'iron man', 'jedi',
'street', 'guitar', 'reading', 'running', 'superman', 'new year', 'mars']
keywords_reduction = { 'iron man': 'ironman', 'dancing': 'dance',
'running': 'run', 'reading': 'read', 'new year': 'newyear' }
prompt_sig = None
for keyword in prompt_keywords:
if keyword in prompt.lower():
prompt_sig = keywords_reduction.get(keyword, keyword)
break
if prompt_sig is None:
prompt_parts = prompt.lower().split(",")
# Remove the view/shot parts (full body view, long shot, etc.) from the prompt.
prompt_parts = [ part for part in prompt_parts if not re.search(r"\W(view|shot)(\W|$)", part) ]
if len(prompt_parts) > 0:
# Use the last word of the prompt as the signature.
prompt_sig = prompt_parts[-1].split()[-1]
else:
prompt_sig = "person"
if len(prompt_sig) > 0:
prompt_sig = "-" + prompt_sig
extra_save_dir = args.extra_save_dir
if extra_save_dir is not None:
os.makedirs(extra_save_dir, exist_ok=True)
for i, sample in enumerate(samples):
filename = f"adaface{ckpt_sig}{prompt_sig}-{i+1}.png"
if len(subj_name_sig) > 0:
filename = f"{subj_name_sig.lower()}-{filename}"
filepath = os.path.join(temp_folder, filename)
# Save the image
sample.save(filepath) # Adjust to your image saving method
saved_image_paths.append(filepath)
if extra_save_dir is not None:
extra_filepath = os.path.join(extra_save_dir, filename)
sample.save(extra_filepath)
print(extra_filepath)
# Solution suggested by o1 to force the client browser to reload images
# when we change guidance scales only.
saved_image_paths = [f"{url}?t={int(time.time())}" for url in saved_image_paths]
return saved_image_paths
def check_prompt_and_model_type(prompt, model_style_type, adaface_encoder_cfg_scale1):
global adaface
model_style_type = model_style_type.lower()
# If the base model type is changed, reload the model.
if model_style_type != args.model_style_type or adaface_encoder_cfg_scale1 != args.adaface_encoder_cfg_scales[0]:
if model_style_type != args.model_style_type:
# Update base model type.
args.model_style_type = model_style_type
print(f"Switching to the base model type: {model_style_type}.")
adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=model_style_type2base_model_path[model_style_type],
adaface_encoder_types=args.adaface_encoder_types,
adaface_ckpt_paths=args.adaface_ckpt_path,
adaface_encoder_cfg_scales=args.adaface_encoder_cfg_scales,
enabled_encoders=args.enabled_encoders,
unet_types=None, extra_unet_dirpaths=None, unet_weights_in_ensemble=None,
unet_uses_attn_lora=args.unet_uses_attn_lora,
attn_lora_layer_names=args.attn_lora_layer_names,
shrink_cross_attn=False,
q_lora_updates_query=args.q_lora_updates_query,
device='cpu')
if adaface_encoder_cfg_scale1 != args.adaface_encoder_cfg_scales[0]:
args.adaface_encoder_cfg_scales[0] = adaface_encoder_cfg_scale1
adaface.set_adaface_encoder_cfg_scales(args.adaface_encoder_cfg_scales)
print(f"Updating the scale for consistentID encoder to {adaface_encoder_cfg_scale1}.")
if not prompt:
raise gr.Error("Prompt cannot be blank")
### Description
title = r"""
<h1>AdaFace: A Versatile Text-space Face Encoder for Face Synthesis and Processing</h1>
"""
description = r"""
<b>Official demo</b> for our working paper <b>AdaFace: A Versatile Text-space Face Encoder for Face Synthesis and Processing</b>.<br>
❗️**What's New**❗️
- Support switching between three model styles: **Photorealistic**, **Realistic** and **Anime**.
- If you just changed the model style, the first image/video generation will take <b>extra 20~30 seconds</b> for loading the new model weight.
❗️**Tips**❗️
1. Upload one or more images of a person. If multiple faces are detected, we use the largest one.
2. Check "Highlight face" to highlight fine facial features.
4. AdaFace Text-to-Video: <a href="https://huggingface.co/spaces/adaface-neurips/adaface-animate" style="display: inline-flex; align-items: center;">
AdaFace-Animate
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow" alt="Hugging Face Spaces" style="margin-left: 5px;">
</a>
**TODO:**
- ControlNet integration.
"""
css = '''
.gradio-container {width: 95% !important}
.custom-gallery {
height: 800px !important;
width: 100%;
margin: 10px auto;
padding: 0px;
overflow-y: auto !important;
}
.tight-row {
gap: 0 !important; /* removes the horizontal gap between columns */
margin: 0 !important; /* remove any extra margin if needed */
padding: 0 !important; /* remove any extra padding if needed */
}
'''
with gr.Blocks(css=css, theme=gr.themes.Origin()) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
# img_file = gr.Image(label="Upload a photo with a face", type="filepath")
img_files = gr.File(
label="Drag / Select 1 or more photos of a person's face",
file_types=["image"],
file_count="multiple"
)
img_files.GRADIO_CACHE = "/tmp/gradio"
# When files are uploaded, show the images in the gallery and hide the file uploader.
uploaded_files_gallery = gr.Gallery(label="Subject images", visible=False, columns=3, rows=1, height=300)
with gr.Column(visible=False) as clear_button_column:
remove_and_reupload = gr.ClearButton(value="Remove and upload subject images",
components=img_files, size="sm")
with gr.Accordion("Second Subject (Optional)", open=False):
img_files2 = gr.File(
label="Drag / Select 1 or more photos of second subject's face (optional)",
file_types=["image"],
file_count="multiple"
)
img_files2.GRADIO_CACHE = "/tmp/gradio"
uploaded_files_gallery2 = gr.Gallery(label="2nd Subject images (optional)", visible=False, columns=3, rows=1, height=300)
with gr.Column(visible=False) as clear_button_column2:
remove_and_reupload2 = gr.ClearButton(value="Remove and upload 2nd Subject images",
components=img_files2, size="sm")
with gr.Row(elem_classes="tight-row"):
with gr.Column(scale=1, min_width=100):
gender = gr.Dropdown(label="Gender", value="(none)",
info="Gender prefix. Select only when the model errs.",
container=False,
choices=[ "(none)", "person", "man", "woman", "girl", "boy" ])
with gr.Column(scale=100):
prompt = gr.Dropdown(label="Prompt",
info="Try something like 'walking on the beach'. If the face is not in focus, try checking 'Highlight face'.",
value="portrait, highlighted hair, futuristic silver armor suit, confident stance, living room, smiling, head tilted, perfect smooth skin",
allow_custom_value=True,
choices=[
"portrait, highlighted hair, futuristic silver armor suit, confident stance, living room, smiling, head tilted, perfect smooth skin",
"portrait, walking on the beach, sunset, orange sky, front view",
"portrait, in a white apron and chef hat, garnishing a gourmet dish",
"portrait, waving hands, dancing pose among folks in a park",
"portrait, in iron man costume, the sky ablaze with hues of orange and purple",
"portrait, jedi wielding a lightsaber, star wars",
"portrait, night view of tokyo street, neon light",
"portrait, playing guitar on a boat, ocean waves",
"portrait, with a passion for reading, curled up with a book in a cozy nook near a window, front view",
"portrait, celebrating new year, fireworks",
"portrait, running pose in a park",
"portrait, in space suit, space helmet, walking on mars",
"portrait, in superman costume, the sky ablaze with hues of orange and purple",
"in a wheelchair",
"on a horse"
])
highlight_face = gr.Checkbox(label="Highlight face", value=False,
info="Enhance the facial features by prepending 'face portrait' to the prompt")
composition_level = \
gr.Slider(label="Composition Level", visible=True,
info="The degree of overall composition, 0~2. Challenging prompts like 'In a wheelchair' and 'on a horse' need level 2",
minimum=0, maximum=2, step=1, value=0)
ablate_prompt_embed_type = gr.Dropdown(label="Ablate prompt embeddings type",
choices=["ada", "ada-nonmix", "img"], value="ada", visible=False,
info="Use this type of prompt embeddings for ablation study")
nonmix_prompt_emb_weight = gr.Slider(label="Weight of ada-nonmix ID embeddings",
minimum=0.0, maximum=0.5, step=0.1, value=0,
info="Weight of ada-nonmix ID embeddings in the prompt embeddings",
visible=False)
subj_name_sig = gr.Textbox(
label="Nickname of Subject (optional; used to name saved images)",
value="",
)
subj_name_sig2 = gr.Textbox(
label="Nickname of 2nd Subject (optional; used to name saved images)",
value="",
visible=False,
)
submit = gr.Button("Submit", variant="primary")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="sagging face, sagging cheeks, wrinkles, flaws in the eyes, flaws in the face, lowres, "
"non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, "
"mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, "
"deformed eyeballs, cross-eyed, extra legs, extra arms, blurry, mutation, duplicate, "
"out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, "
"nude, naked, nsfw, topless, bare breasts",
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=8.0,
step=0.5,
value=args.guidance_scale,
)
adaface_encoder_cfg_scale1 = gr.Slider(
label="Scale for consistentID encoder",
minimum=1.0,
maximum=12.0,
step=1.0,
value=args.adaface_encoder_cfg_scales[0],
visible=False,
)
model_style_type = gr.Dropdown(
label="Base Model Style Type",
info="Switching the base model type will take 10~20 seconds to reload the model",
value=args.model_style_type.capitalize(),
choices=["Realistic", "Anime", "Photorealistic"],
allow_custom_value=False,
filterable=False,
)
perturb_std = gr.Slider(
label="Std of noise added to input (may help stablize face embeddings)",
minimum=0.0,
maximum=0.05,
step=0.025,
value=0.0,
visible=False,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=8,
step=1,
value=4,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True,
info="Uncheck for reproducible results")
disable_adaface = gr.Checkbox(label="Disable AdaFace", value=False,
info="Disable AdaFace for ablation. If checked, the results are no longer personalized.",
visible=args.show_disable_adaface_checkbox)
with gr.Column():
out_gallery = gr.Gallery(label="Generated Images", interactive=False, columns=2, rows=4, height=800,
elem_classes="custom-gallery")
img_files.upload(fn=swap_to_gallery, inputs=img_files, outputs=[uploaded_files_gallery, clear_button_column, img_files])
img_files2.upload(fn=swap_to_gallery, inputs=img_files2, outputs=[uploaded_files_gallery2, clear_button_column2, img_files2])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery, clear_button_column,
img_files, subj_name_sig, gender])
remove_and_reupload2.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery2, clear_button_column2,
img_files2, subj_name_sig2, gender])
check_prompt_and_model_type_call_dict = {
'fn': check_prompt_and_model_type,
'inputs': [prompt, model_style_type, adaface_encoder_cfg_scale1],
'outputs': None
}
randomize_seed_fn_call_dict = {
'fn': randomize_seed_fn,
'inputs': [seed, randomize_seed],
'outputs': seed
}
generate_image_call_dict = {
'fn': generate_image,
'inputs': [img_files, img_files2, guidance_scale, perturb_std, num_images, prompt,
negative_prompt, gender, highlight_face, ablate_prompt_embed_type,
nonmix_prompt_emb_weight, composition_level, seed, disable_adaface, subj_name_sig],
'outputs': [out_gallery]
}
submit.click(**check_prompt_and_model_type_call_dict).success(**randomize_seed_fn_call_dict).then(**generate_image_call_dict)
subj_name_sig.submit(**check_prompt_and_model_type_call_dict).success(**randomize_seed_fn_call_dict).then(**generate_image_call_dict)
demo.launch(share=True, server_name=args.ip, ssl_verify=False) |