Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,57 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
demo = gr.Interface(
|
33 |
-
fn=
|
34 |
-
inputs=gr.JSON(label="JSON (question, schema
|
35 |
outputs="text",
|
36 |
-
title="
|
37 |
-
description="
|
38 |
-
allow_flagging="never"
|
39 |
)
|
40 |
|
41 |
demo.launch()
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
import gradio as gr
|
4 |
+
from groq import Groq
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
api = os.getenv("groq_api_key")
|
8 |
+
|
9 |
+
def create_prompt(user_query, table_metadata):
|
10 |
+
system_prompt = """
|
11 |
+
You are a SQL query generator specialized in generating SQL queries for a single table at a time.
|
12 |
+
Your task is to accurately convert natural language queries into SQL statements based on the user's intent and the provided table metadata.
|
13 |
+
|
14 |
+
Rules:
|
15 |
+
- Single Table Only: Use only the table in the metadata.
|
16 |
+
- Metadata-Based Validation: Use only columns in the metadata.
|
17 |
+
- User Intent: Support filters, grouping, sorting, etc.
|
18 |
+
- SQL Syntax: Use standard SQL (DuckDB compatible).
|
19 |
+
- Output only valid SQL. No extra commentary.
|
20 |
+
|
21 |
+
Input:
|
22 |
+
User Query: {user_query}
|
23 |
+
Table Metadata: {table_metadata}
|
24 |
+
|
25 |
+
Output:
|
26 |
+
SQL Query (on a single line, nothing else).
|
27 |
+
"""
|
28 |
+
return system_prompt.strip(), f"User Query: {user_query}\nTable Metadata: {table_metadata}"
|
29 |
+
|
30 |
+
def generate_output(system_prompt, user_prompt):
|
31 |
+
client = Groq(api_key=api)
|
32 |
+
chat_completion = client.chat.completions.create(
|
33 |
+
messages=[
|
34 |
+
{"role": "system", "content": system_prompt},
|
35 |
+
{"role": "user", "content": user_prompt}
|
36 |
+
],
|
37 |
+
model="llama3-70b-8192"
|
38 |
)
|
39 |
+
response = chat_completion.choices[0].message.content.strip()
|
40 |
+
return response if response.lower().startswith("select") else "Can't perform the task at the moment."
|
41 |
|
42 |
+
# NEW: accepts user_query and dynamic table_metadata string
|
43 |
+
def response(payload):
|
44 |
+
user_query = payload.get("question", "")
|
45 |
+
table_metadata = payload.get("schema", "")
|
46 |
+
system_prompt, user_prompt = create_prompt(user_query, table_metadata)
|
47 |
+
return generate_output(system_prompt, user_prompt)
|
48 |
|
49 |
demo = gr.Interface(
|
50 |
+
fn=response,
|
51 |
+
inputs=gr.JSON(label="Input JSON (question, schema)"),
|
52 |
outputs="text",
|
53 |
+
title="SQL Generator (Groq + LLaMA3)",
|
54 |
+
description="Input: question & table metadata. Output: SQL using dynamic schema."
|
|
|
55 |
)
|
56 |
|
57 |
demo.launch()
|