Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
model =
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
|
10 |
def generate_sql(payload):
|
11 |
-
# Extract parts from the JSON payload
|
12 |
question = payload.get("question", "")
|
13 |
schema = payload.get("schema", "")
|
14 |
sample_rows = payload.get("sample_rows", [])
|
15 |
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
# Tokenize and generate
|
24 |
-
|
25 |
-
outputs = model.generate(
|
26 |
-
|
27 |
|
28 |
-
return
|
29 |
|
30 |
-
# Gradio interface
|
31 |
demo = gr.Interface(
|
32 |
fn=generate_sql,
|
33 |
-
inputs=gr.JSON(label="
|
34 |
outputs="text",
|
35 |
-
title="Text-to-SQL
|
36 |
-
description="
|
37 |
)
|
38 |
|
39 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
|
4 |
+
# Load FLAN-T5-small
|
5 |
+
model_name = "google/flan-t5-small"
|
6 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
7 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
8 |
|
9 |
def generate_sql(payload):
|
|
|
10 |
question = payload.get("question", "")
|
11 |
schema = payload.get("schema", "")
|
12 |
sample_rows = payload.get("sample_rows", [])
|
13 |
|
14 |
+
# Convert sample rows into flat string
|
15 |
+
rows_text = " ".join([str(row) for row in sample_rows]) if sample_rows else ""
|
16 |
|
17 |
+
# Construct prompt for instruction tuning
|
18 |
+
prompt = (
|
19 |
+
f"You are a SQL expert.\n"
|
20 |
+
f"Schema: {schema}\n"
|
21 |
+
f"Sample Rows: {rows_text}\n"
|
22 |
+
f"Question: {question}\n"
|
23 |
+
f"Generate SQL:"
|
24 |
+
)
|
25 |
|
26 |
+
# Tokenize and generate SQL
|
27 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
28 |
+
outputs = model.generate(input_ids, max_length=256, temperature=0.6)
|
29 |
+
sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
|
31 |
+
return sql
|
32 |
|
|
|
33 |
demo = gr.Interface(
|
34 |
fn=generate_sql,
|
35 |
+
inputs=gr.JSON(label="JSON (question, schema, sample_rows)"),
|
36 |
outputs="text",
|
37 |
+
title="FLAN-T5 Text-to-SQL",
|
38 |
+
description="Using FLAN-T5 to generate SQL from natural language and tabular schema."
|
39 |
)
|
40 |
|
41 |
+
demo.launch()
|