Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
3 |
|
4 |
-
|
5 |
-
model_path =
|
6 |
-
model =
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
8 |
|
9 |
def generate_sql(payload):
|
10 |
-
# Extract parts from the JSON payload
|
11 |
question = payload.get("question", "")
|
12 |
schema = payload.get("schema", "")
|
13 |
sample_rows = payload.get("sample_rows", [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
# Convert sample rows into a single string
|
16 |
-
sample_str = " ".join([str(row) for row in sample_rows]) if sample_rows else ""
|
17 |
-
|
18 |
-
# Build model input prompt
|
19 |
-
prompt = f"Question: {question} Schema: {schema} Sample Rows: {sample_str}"
|
20 |
-
|
21 |
-
# Tokenize and generate
|
22 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
23 |
-
outputs = model.generate(**inputs, max_length=512)
|
24 |
-
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
-
|
26 |
-
return generated_sql
|
27 |
-
|
28 |
-
# Gradio interface
|
29 |
demo = gr.Interface(
|
30 |
fn=generate_sql,
|
31 |
inputs=gr.JSON(label="Input JSON (question, schema, sample_rows)"),
|
32 |
outputs="text",
|
33 |
-
title="Text
|
34 |
-
description="Enter a JSON object with 'question', 'schema', and optional 'sample_rows'. The model will generate SQL."
|
35 |
)
|
36 |
|
37 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
model_path = "defog/sqlcoder-7b-2"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
|
|
|
8 |
|
9 |
def generate_sql(payload):
|
|
|
10 |
question = payload.get("question", "")
|
11 |
schema = payload.get("schema", "")
|
12 |
sample_rows = payload.get("sample_rows", [])
|
13 |
+
|
14 |
+
sample_str = "\n".join([str(row) for row in sample_rows]) if sample_rows else ""
|
15 |
+
|
16 |
+
prompt = f"""
|
17 |
+
### Task
|
18 |
+
Generate a SQL query to answer [QUESTION]{question}[/QUESTION]
|
19 |
+
|
20 |
+
### Database Schema
|
21 |
+
The query will run on a database with the following schema:
|
22 |
+
{schema}
|
23 |
+
|
24 |
+
### Sample Rows
|
25 |
+
{sample_str}
|
26 |
+
|
27 |
+
### Answer
|
28 |
+
Given the database schema, here is the SQL query that [QUESTION]{question}[/QUESTION]
|
29 |
+
[SQL]
|
30 |
+
""".strip()
|
31 |
+
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
33 |
+
outputs = model.generate(
|
34 |
+
**inputs,
|
35 |
+
max_length=512,
|
36 |
+
do_sample=False,
|
37 |
+
num_beams=4,
|
38 |
+
early_stopping=True
|
39 |
+
)
|
40 |
+
sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
+
return sql.split("[SQL]")[-1].strip()
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
demo = gr.Interface(
|
44 |
fn=generate_sql,
|
45 |
inputs=gr.JSON(label="Input JSON (question, schema, sample_rows)"),
|
46 |
outputs="text",
|
47 |
+
title="SQLCoder - Text to SQL",
|
48 |
+
description="Enter a JSON object with 'question', 'schema', and optional 'sample_rows'. The model will generate SQL using Defog's sqlcoder-7b-2."
|
49 |
)
|
50 |
|
51 |
demo.launch()
|