adamcasson
commited on
Commit
·
5e49fae
1
Parent(s):
07c0cb4
fix bug and refactor
Browse files
app.py
CHANGED
|
@@ -44,9 +44,11 @@ def calculator(
|
|
| 44 |
d_model: int,
|
| 45 |
n_heads: int,
|
| 46 |
n_vocab: int,
|
| 47 |
-
n_ctx: int,
|
| 48 |
ff_ratio: int,
|
|
|
|
|
|
|
| 49 |
incl_embed: bool,
|
|
|
|
| 50 |
) -> Tuple[int, int, int]:
|
| 51 |
d_attn = d_model // n_heads
|
| 52 |
if d_model % n_heads != 0:
|
|
@@ -61,37 +63,68 @@ def calculator(
|
|
| 61 |
flops_per_sequence = sum(flops_terms)
|
| 62 |
params = sum(params)
|
| 63 |
else:
|
| 64 |
-
flops_per_sequence = sum(flops_terms[1:
|
| 65 |
-
params = sum(params[1:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
with gr.Blocks() as iface:
|
| 71 |
gr.Markdown(
|
| 72 |
-
"Calculate how many FLOPs a Transformer language model
|
| 73 |
)
|
| 74 |
with gr.Row():
|
| 75 |
with gr.Column():
|
|
|
|
| 76 |
n_layer = gr.Number(label="Number of layers (n_layer)")
|
| 77 |
d_model = gr.Number(label="Model dimensions (d_model)")
|
| 78 |
n_heads = gr.Number(label="Number of attention heads per layer (n_heads)")
|
| 79 |
n_vocab = gr.Number(label="Vocabulary size (n_vocab)")
|
| 80 |
-
n_ctx = gr.Number(label="Sequence length")
|
| 81 |
ff_ratio = gr.Number(value=4, label="Feedforward ratio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
incl_embed = gr.Checkbox(value=True, label="Include embeddings")
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
btn = gr.Button(value="Enter", variant="primary")
|
| 85 |
|
| 86 |
with gr.Column():
|
|
|
|
| 87 |
params = gr.Number(label="Model parameters")
|
| 88 |
flops_per_sequence = gr.Number(label="FLOPs per sequence")
|
| 89 |
flops_per_token = gr.Number(label="FLOPs per token")
|
|
|
|
| 90 |
|
| 91 |
btn.click(
|
| 92 |
calculator,
|
| 93 |
-
inputs=[
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
|
| 97 |
gr.Markdown("### GPT-3 model family examples")
|
|
@@ -100,18 +133,28 @@ with gr.Blocks() as iface:
|
|
| 100 |
)
|
| 101 |
gr.Examples(
|
| 102 |
[
|
| 103 |
-
[12, 768, 12, 50257, 4096,
|
| 104 |
-
[24, 1024, 16, 50257, 4096,
|
| 105 |
-
[24, 2048, 32, 50257, 4096,
|
| 106 |
-
[32, 2560, 32, 50257, 4096,
|
| 107 |
-
[32, 4096, 32, 50257, 4096,
|
| 108 |
-
[40, 5120, 40, 50257, 4096,
|
| 109 |
-
[48, 7168, 56, 50257, 4096,
|
| 110 |
-
[64, 9216, 72, 50257, 4096,
|
| 111 |
-
[96, 12288, 96, 50257, 4096,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
],
|
| 113 |
-
[
|
| 114 |
-
[params, flops_per_sequence, flops_per_token],
|
| 115 |
calculator,
|
| 116 |
cache_examples=False,
|
| 117 |
)
|
|
|
|
| 44 |
d_model: int,
|
| 45 |
n_heads: int,
|
| 46 |
n_vocab: int,
|
|
|
|
| 47 |
ff_ratio: int,
|
| 48 |
+
n_ctx: int,
|
| 49 |
+
n_tokens: int,
|
| 50 |
incl_embed: bool,
|
| 51 |
+
fwd_only: bool,
|
| 52 |
) -> Tuple[int, int, int]:
|
| 53 |
d_attn = d_model // n_heads
|
| 54 |
if d_model % n_heads != 0:
|
|
|
|
| 63 |
flops_per_sequence = sum(flops_terms)
|
| 64 |
params = sum(params)
|
| 65 |
else:
|
| 66 |
+
flops_per_sequence = sum(flops_terms[1:])
|
| 67 |
+
params = sum(params[1:])
|
| 68 |
+
|
| 69 |
+
flops_per_token = flops_per_sequence / n_ctx
|
| 70 |
+
|
| 71 |
+
n_tokens_flops = flops_per_token * n_tokens
|
| 72 |
|
| 73 |
+
if not fwd_only:
|
| 74 |
+
flops_per_sequence *= 3
|
| 75 |
+
flops_per_token *= 3
|
| 76 |
+
n_tokens_flops *= 3
|
| 77 |
+
|
| 78 |
+
return params, flops_per_sequence, flops_per_token, n_tokens_flops
|
| 79 |
|
| 80 |
|
| 81 |
with gr.Blocks() as iface:
|
| 82 |
gr.Markdown(
|
| 83 |
+
"Calculate how many FLOPs a Transformer language model uses with the method described in [DeepMind's Chinchilla scaling law paper](https://arxiv.org/abs/2203.15556) (see Appendix F)."
|
| 84 |
)
|
| 85 |
with gr.Row():
|
| 86 |
with gr.Column():
|
| 87 |
+
gr.Markdown("#### Architecture details")
|
| 88 |
n_layer = gr.Number(label="Number of layers (n_layer)")
|
| 89 |
d_model = gr.Number(label="Model dimensions (d_model)")
|
| 90 |
n_heads = gr.Number(label="Number of attention heads per layer (n_heads)")
|
| 91 |
n_vocab = gr.Number(label="Vocabulary size (n_vocab)")
|
|
|
|
| 92 |
ff_ratio = gr.Number(value=4, label="Feedforward ratio")
|
| 93 |
+
gr.Markdown("#### Data details")
|
| 94 |
+
n_ctx = gr.Number(label="Sequence length (n_ctx)")
|
| 95 |
+
n_tokens = gr.Number(
|
| 96 |
+
value=0,
|
| 97 |
+
label="Total number of training tokens (n_tokens) (optional)",
|
| 98 |
+
)
|
| 99 |
+
gr.Markdown("#### Settings")
|
| 100 |
incl_embed = gr.Checkbox(value=True, label="Include embeddings")
|
| 101 |
+
fwd_only = gr.Checkbox(
|
| 102 |
+
value=False, label="Calculate FLOPs for only forward pass"
|
| 103 |
+
)
|
| 104 |
|
| 105 |
btn = gr.Button(value="Enter", variant="primary")
|
| 106 |
|
| 107 |
with gr.Column():
|
| 108 |
+
gr.Markdown("#### Output")
|
| 109 |
params = gr.Number(label="Model parameters")
|
| 110 |
flops_per_sequence = gr.Number(label="FLOPs per sequence")
|
| 111 |
flops_per_token = gr.Number(label="FLOPs per token")
|
| 112 |
+
n_tokens_flops = gr.Number(label="Total FLOPs for n_tokens")
|
| 113 |
|
| 114 |
btn.click(
|
| 115 |
calculator,
|
| 116 |
+
inputs=[
|
| 117 |
+
n_layer,
|
| 118 |
+
d_model,
|
| 119 |
+
n_heads,
|
| 120 |
+
n_vocab,
|
| 121 |
+
ff_ratio,
|
| 122 |
+
n_ctx,
|
| 123 |
+
n_tokens,
|
| 124 |
+
incl_embed,
|
| 125 |
+
fwd_only,
|
| 126 |
+
],
|
| 127 |
+
outputs=[params, flops_per_sequence, flops_per_token, n_tokens_flops],
|
| 128 |
)
|
| 129 |
|
| 130 |
gr.Markdown("### GPT-3 model family examples")
|
|
|
|
| 133 |
)
|
| 134 |
gr.Examples(
|
| 135 |
[
|
| 136 |
+
[12, 768, 12, 50257, 4, 4096, 0, True, False],
|
| 137 |
+
[24, 1024, 16, 50257, 4, 4096, 0, True, False],
|
| 138 |
+
[24, 2048, 32, 50257, 4, 4096, 0, True, False],
|
| 139 |
+
[32, 2560, 32, 50257, 4, 4096, 0, True, False],
|
| 140 |
+
[32, 4096, 32, 50257, 4, 4096, 0, True, False],
|
| 141 |
+
[40, 5120, 40, 50257, 4, 4096, 0, True, False],
|
| 142 |
+
[48, 7168, 56, 50257, 4, 4096, 0, True, False],
|
| 143 |
+
[64, 9216, 72, 50257, 4, 4096, 0, True, False],
|
| 144 |
+
[96, 12288, 96, 50257, 4, 4096, 0, True, False],
|
| 145 |
+
],
|
| 146 |
+
[
|
| 147 |
+
n_layer,
|
| 148 |
+
d_model,
|
| 149 |
+
n_heads,
|
| 150 |
+
n_vocab,
|
| 151 |
+
ff_ratio,
|
| 152 |
+
n_ctx,
|
| 153 |
+
n_tokens,
|
| 154 |
+
incl_embed,
|
| 155 |
+
fwd_only,
|
| 156 |
],
|
| 157 |
+
[params, flops_per_sequence, flops_per_token, n_tokens_flops],
|
|
|
|
| 158 |
calculator,
|
| 159 |
cache_examples=False,
|
| 160 |
)
|