Spaces:
Runtime error
Runtime error
import random | |
from functools import partial | |
import gradio as gr | |
import numpy as np | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("adamcasson/ul2-tinystories") | |
def mask_spans( | |
tokens, | |
mu, | |
r, | |
vocab_size, | |
eos_id, | |
prepend_id=None, | |
prefix_lm=False, | |
): | |
masked_tokens = tokens[:] | |
encoder_inputs = [prepend_id] if prepend_id is not None else [] | |
encoder_mask = [1] if prepend_id is not None else [] | |
targets = [] | |
targets_mask = [] | |
# Original T5 code reused tokens at the end of vocab for sentinels | |
# https://github.com/google-research/text-to-text-transfer-transformer/blob/258fd30687e6c60d18b7204d009dc5c753142987/t5/data/preprocessors.py#L3106C6-L3106C6 | |
sentinel_id = vocab_size - 1 | |
if prefix_lm: | |
# n = 1 | |
mu = max(1, int(len(tokens) * r)) | |
start = max( | |
0, len(tokens) - random.randint(1, int(2 * mu)) | |
) # max to handle start < 0 | |
encoder_inputs += tokens[:start] + [sentinel_id] | |
encoder_mask += ([1] * len(tokens[:start])) + [0] | |
targets += [sentinel_id] + tokens[start:] | |
targets_mask += [0] + ([1] * len(tokens[start:])) | |
for i in range(start, len(tokens)): | |
masked_tokens[i] = -1 | |
else: | |
# n = ceil(len(tokens) / mu) | |
prev_span_unmasked = False | |
start = 0 | |
end = 0 | |
while start < len(tokens): | |
# uniform random span length | |
length = random.randint(1, int(2 * mu)) | |
end = min(start + length, len(tokens)) | |
# randomly decide if span should be masked | |
if np.random.binomial(1, p=r): | |
encoder_inputs.append(sentinel_id) | |
encoder_mask.append(0) | |
targets += tokens[start:end] | |
targets_mask += ([1] * len(tokens[start:end])) | |
for i in range(start, end): | |
masked_tokens[i] = -1 | |
prev_span_unmasked = False | |
sentinel_id -= 1 | |
else: | |
encoder_inputs += tokens[start:end] | |
encoder_mask += ([1] * len(tokens[start:end])) | |
# if previous span was also unmasked we don't need to keep adding the sentinel token | |
if not prev_span_unmasked: | |
targets.append(sentinel_id) | |
targets_mask.append(0) | |
prev_span_unmasked = True | |
start = end | |
targets.append(eos_id) | |
targets_mask.append(1) | |
decoder_inputs = [eos_id] + targets[:-1] | |
decoder_mask = [1] + targets_mask[:-1] | |
return encoder_inputs, encoder_mask, decoder_inputs, decoder_mask, targets, targets_mask, masked_tokens | |
# Create mixture-of-denoisers | |
denoiser_map = { | |
"R (µ = 3, r = 0.15)": partial( | |
mask_spans, | |
mu=3, | |
r=0.15, | |
vocab_size=tokenizer.vocab_size, | |
eos_id=tokenizer.eos_token_id, | |
prepend_id=tokenizer.vocab["[R]"], | |
), | |
"R (µ = 8, r = 0.15)": partial( | |
mask_spans, | |
mu=8, | |
r=0.15, | |
vocab_size=tokenizer.vocab_size, | |
eos_id=tokenizer.eos_token_id, | |
prepend_id=tokenizer.vocab["[R]"], | |
), | |
"S (r = 0.25)": partial( | |
mask_spans, | |
mu=None, | |
r=0.25, | |
vocab_size=tokenizer.vocab_size, | |
eos_id=tokenizer.eos_token_id, | |
prefix_lm=True, | |
prepend_id=tokenizer.vocab["[S]"], | |
), | |
"X (µ = 3, r = 0.5)": partial( | |
mask_spans, | |
mu=3, | |
r=0.5, | |
vocab_size=tokenizer.vocab_size, | |
eos_id=tokenizer.eos_token_id, | |
prepend_id=tokenizer.vocab["[X]"], | |
), | |
"X (µ = 8, r = 0.5)": partial( | |
mask_spans, | |
mu=8, | |
r=0.5, | |
vocab_size=tokenizer.vocab_size, | |
eos_id=tokenizer.eos_token_id, | |
prepend_id=tokenizer.vocab["[X]"], | |
), | |
"X (µ = 32, r = 0.15)": partial( | |
mask_spans, | |
mu=32, | |
r=0.15, | |
vocab_size=tokenizer.vocab_size, | |
eos_id=tokenizer.eos_token_id, | |
prepend_id=tokenizer.vocab["[X]"], | |
), | |
"X (µ = 32, r = 0.5)": partial( | |
mask_spans, | |
mu=32, | |
r=0.5, | |
vocab_size=tokenizer.vocab_size, | |
eos_id=tokenizer.eos_token_id, | |
prepend_id=tokenizer.vocab["[X]"], | |
), | |
} | |
def mask_viz(denoiser, text): | |
seq = tokenizer.encode(text) | |
tokens = tokenizer.tokenize(text) | |
enc_in, enc_mask, dec_in, dec_mask, targets, targets_mask, mask = denoiser_map[denoiser](seq) | |
highlight_tok = [] | |
for tok, tok_mask in zip(tokens, mask): | |
highlight_tok.append((tok.replace("Ġ", " ").replace("Ċ", "\n"), "masked" if tok_mask == -1 else "unmasked")) | |
highlight_enc = [] | |
enc_tok = tokenizer.convert_ids_to_tokens(enc_in) | |
for id, tok, tok_mask in zip(enc_in, enc_tok, enc_mask): | |
highlight_enc.append((tok.replace("Ġ", " ").replace("Ċ", "\n") if tok_mask == 1 else str(id), "masked" if tok_mask == 0 else "unmasked")) | |
highlight_dec = [] | |
dec_tok = tokenizer.convert_ids_to_tokens(dec_in) | |
for id, tok, tok_mask in zip(dec_in, dec_tok, dec_mask): | |
highlight_dec.append((tok.replace("Ġ", " ").replace("Ċ", "\n") if tok_mask == 1 else str(id), "masked" if tok_mask == 0 else "unmasked")) | |
return highlight_tok, highlight_enc, highlight_dec | |
iface = gr.Interface( | |
fn=mask_viz, | |
inputs=[ | |
gr.Dropdown( | |
label="Denoiser", | |
choices=[ | |
"R (µ = 3, r = 0.15)", | |
"R (µ = 8, r = 0.15)", | |
"S (r = 0.25)", | |
"X (µ = 3, r = 0.5)", | |
"X (µ = 8, r = 0.5)", | |
"X (µ = 32, r = 0.15)", | |
"X (µ = 32, r = 0.5)", | |
], | |
value="R (µ = 3, r = 0.15)", | |
), | |
gr.Textbox( | |
value='Once upon a time, there was a family with a little boy. His name was Jack.\nOne day, Jack had a thought. He wanted to go to the park and play. His parents were worried because it was getting dark and the park was far away.\n"Mom, I want to play in the park," Jack said.\nHis mother thought for a moment. "It\'s too late to go to the park now. We\'d better stay at home," she said. \nJack was sad, but he understood why his parents were worried. Together they decided to play games at home instead. \nJack was so happy to get to play games with his family. He thought it was the best time ever.' | |
), | |
], | |
outputs=[ | |
gr.HighlightedText( | |
label="Corrupted spans", | |
combine_adjacent=True, | |
show_legend=True, | |
color_map={"unmasked": "green", "masked": "red"} | |
), | |
gr.HighlightedText( | |
label="Encoder input", | |
combine_adjacent=True, | |
show_legend=True, | |
color_map={"unmasked": "green", "masked": "red"} | |
), | |
gr.HighlightedText( | |
label="Decoder input", | |
combine_adjacent=True, | |
show_legend=True, | |
color_map={"unmasked": "green", "masked": "red"} | |
), | |
], | |
) | |
iface.launch() |