Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,072 Bytes
4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 1128e78 48c31e7 1128e78 4d6f2bc 1128e78 4d6f2bc 48c31e7 4d6f2bc 1128e78 4d6f2bc 1128e78 48c31e7 4d6f2bc 4c2b2fd 4d6f2bc 1128e78 48c31e7 4d6f2bc 48c31e7 4d6f2bc 1128e78 4d6f2bc 1128e78 48c31e7 1128e78 48c31e7 1128e78 48c31e7 1128e78 48c31e7 1128e78 48c31e7 1128e78 4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 1128e78 4d6f2bc 48c31e7 4d6f2bc 48c31e7 1128e78 4d6f2bc 1128e78 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 4d6f2bc 48c31e7 1128e78 4d6f2bc 48c31e7 4d6f2bc 48c31e7 1128e78 48c31e7 4d6f2bc 48c31e7 4d6f2bc 1128e78 4d6f2bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import re
from contextlib import contextmanager
from datetime import datetime
from itertools import product
from os import environ
from types import MethodType
from warnings import filterwarnings
import spaces
import torch
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
from DeepCache import DeepCacheSDHelper
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
)
from diffusers.models import AutoencoderKL, AutoencoderTiny
from tgate.SD import tgate as tgate_sd
from tgate.SD_DeepCache import tgate as tgate_sd_deepcache
from torch._dynamo import OptimizedModule
ZERO_GPU = (
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
or environ.get("SPACES_ZERO_GPU", "") == "1"
)
EMBEDDINGS = {
"./embeddings/bad_prompt_version2.pt": "<bad_prompt>",
"./embeddings/BadDream.pt": "<bad_dream>",
"./embeddings/FastNegativeV2.pt": "<fast_negative>",
"./embeddings/negative_hand.pt": "<negative_hand>",
"./embeddings/UnrealisticDream.pt": "<unrealistic_dream>",
}
# some models use the deprecated CLIPFeatureExtractor class
# should use CLIPImageProcessor instead
filterwarnings("ignore", category=FutureWarning, module="transformers")
class Loader:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(Loader, cls).__new__(cls)
cls._instance.cpu = torch.device("cpu")
cls._instance.gpu = torch.device("cuda")
cls._instance.pipe = None
return cls._instance
def _load_vae(self, model_name=None, taesd=False, dtype=None):
if taesd:
# can't compile tiny VAE
return AutoencoderTiny.from_pretrained(
pretrained_model_name_or_path="madebyollin/taesd",
use_safetensors=True,
torch_dtype=dtype,
).to(self.gpu)
return torch.compile(
fullgraph=True,
mode="reduce-overhead",
model=AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=model_name,
use_safetensors=True,
torch_dtype=dtype,
subfolder="vae",
).to(self.gpu),
)
def load(self, model, scheduler, karras, taesd, dtype=None):
model_lower = model.lower()
schedulers = {
"DEIS 2M": DEISMultistepScheduler,
"DPM++ 2M": DPMSolverMultistepScheduler,
"DPM2 a": KDPM2AncestralDiscreteScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"Heun": HeunDiscreteScheduler,
"LMS": LMSDiscreteScheduler,
"PNDM": PNDMScheduler,
}
scheduler_kwargs = {
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"use_karras_sigmas": karras,
"beta_start": 0.00085,
"beta_end": 0.012,
"steps_offset": 1,
}
if scheduler == "PNDM" or scheduler == "Euler a":
del scheduler_kwargs["use_karras_sigmas"]
pipe_kwargs = {
"scheduler": schedulers[scheduler](**scheduler_kwargs),
"pretrained_model_name_or_path": model_lower,
"requires_safety_checker": False,
"use_safetensors": True,
"safety_checker": None,
"torch_dtype": dtype,
}
# already loaded
if self.pipe is not None:
model_name = self.pipe.config._name_or_path
same_model = model_name.lower() == model_lower
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
if same_model:
if not same_scheduler:
print(f"Switching to {scheduler}...")
if not same_karras:
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
if not same_scheduler or not same_karras:
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
# if compiled will be an OptimizedModule
vae_type = type(self.pipe.vae)
if (issubclass(vae_type, (AutoencoderKL, OptimizedModule)) and taesd) or (
issubclass(vae_type, AutoencoderTiny) and not taesd
):
print(f"Switching to {'Tiny' if taesd else 'KL'} VAE...")
self.pipe.vae = self._load_vae(model_lower, taesd, dtype)
return self.pipe
else:
print(f"Unloading {model_name.lower()}...")
self.pipe = None
torch.cuda.empty_cache()
# no fp16 available
if not ZERO_GPU and model_lower not in [
"sg161222/realistic_vision_v5.1_novae",
"prompthero/openjourney-v4",
"linaqruf/anything-v3-1",
]:
pipe_kwargs["variant"] = "fp16"
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
self.pipe.vae = self._load_vae(model_lower, taesd, dtype)
self.pipe.load_textual_inversion(
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
tokens=list(EMBEDDINGS.values()),
)
return self.pipe
@contextmanager
def deep_cache(pipe, interval=1, branch=0, tgate_step=0):
if interval > 1:
helper = DeepCacheSDHelper(pipe=pipe)
helper.set_params(cache_interval=interval, cache_branch_id=branch)
helper.enable()
if tgate_step > 0:
pipe.deepcache = helper
pipe.tgate = MethodType(tgate_sd_deepcache, pipe)
try:
yield helper
finally:
helper.disable()
elif interval < 2 and tgate_step > 0:
pipe.tgate = MethodType(tgate_sd, pipe)
yield None
else:
yield None
# parse prompts with arrays
def parse_prompt(prompt: str) -> list[str]:
arrays = re.findall(r"\[\[(.*?)\]\]", prompt)
if not arrays:
return [prompt]
tokens = [item.split(",") for item in arrays]
combinations = list(product(*tokens))
prompts = []
for combo in combinations:
current_prompt = prompt
for i, token in enumerate(combo):
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
prompts.append(current_prompt)
return prompts
@spaces.GPU(duration=30)
def generate(
positive_prompt,
negative_prompt="",
seed=None,
model="Lykon/dreamshaper-8",
scheduler="DEIS 2M",
width=512,
height=512,
guidance_scale=7.5,
inference_steps=30,
num_images=1,
karras=True,
taesd=False,
clip_skip=False,
truncate_prompts=False,
increment_seed=True,
deep_cache_interval=1,
deep_cache_branch=0,
tgate_step=0,
Error=Exception,
):
if not torch.cuda.is_available():
raise Error("CUDA not available")
if seed is None:
seed = int(datetime.now().timestamp())
TORCH_DTYPE = (
torch.bfloat16
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
else torch.float16
)
EMBEDDINGS_TYPE = (
ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NORMALIZED
if clip_skip
else ReturnedEmbeddingsType.LAST_HIDDEN_STATES_NORMALIZED
)
with torch.inference_mode():
loader = Loader()
pipe = loader.load(model, scheduler, karras, taesd, dtype=TORCH_DTYPE)
# prompt embeds
compel = Compel(
textual_inversion_manager=DiffusersTextualInversionManager(pipe),
dtype_for_device_getter=lambda _: TORCH_DTYPE,
returned_embeddings_type=EMBEDDINGS_TYPE,
truncate_long_prompts=truncate_prompts,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
device=pipe.device,
)
images = []
current_seed = seed
neg_embeds = compel(negative_prompt)
for i in range(num_images):
# seeded generator for each iteration
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
# get the prompt for this iteration
all_positive_prompts = parse_prompt(positive_prompt)
prompt_index = i % len(all_positive_prompts)
pos_prompt = all_positive_prompts[prompt_index]
pos_embeds = compel(pos_prompt)
pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length(
[pos_embeds, neg_embeds]
)
with deep_cache(
pipe,
interval=deep_cache_interval,
branch=deep_cache_branch,
tgate_step=tgate_step,
):
pipe_kwargs = {
"num_inference_steps": inference_steps,
"negative_prompt_embeds": neg_embeds,
"guidance_scale": guidance_scale,
"prompt_embeds": pos_embeds,
"generator": generator,
"height": height,
"width": width,
}
result = (
pipe.tgate(**pipe_kwargs, gate_step=tgate_step)
if tgate_step > 0
else pipe(**pipe_kwargs)
)
images.append((result.images[0], str(current_seed)))
if increment_seed:
current_seed += 1
if ZERO_GPU:
# spaces always start fresh
loader.pipe = None
return images
|